• Title/Summary/Keyword: Gene regulation

Search Result 2,207, Processing Time 0.028 seconds

The Function of Two n-Alkane Inducible Genes (ALIl, POX18Cm) for n-Alkane Assimilating Candida maltosa (Candida maltosa에서 분리된 n-Alkane 유도성 유전자(ALI1, POX18Cm)의 n-Alkane 대사에 있어서의 기능)

  • ;;Masamichi Takagi
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.2
    • /
    • pp.181-186
    • /
    • 1993
  • The functions of n-alkane inducible genes, ALI1 and POX18Cm isolated from Canida maltosa were investigated, using it's distruptants. As a result, it is suggested that ALI1 is essential for n-alkane assimilation in C. mltosa and it regulates genes related to assimilation of n-alkane (ALI1, P450alk POX18Cm) at transcriptional level. Nuclear localization experiments indicated that ALI1 was located and functioned in the nucleus. POX18Cm is considered as a peroxisomal nonspecific lipid transfer protein gene related to n-alkane assimilation in C. maltosa also regulated by ALI1. But it had no significant effect on n-alkane assimilation in C. maltosa.

  • PDF

Antisense DNAs as Targeted Genetic Medicine to Treat Cancer

  • Chochung, Yoo-S.
    • Archives of Pharmacal Research
    • /
    • v.26 no.3
    • /
    • pp.183-191
    • /
    • 2003
  • Nucleic acid therapies represent a direct genetic approach for cancer treatment. Such an approach takes advantage of mechanisms that activate genes known to confer a growth advantage to neoplastic cells. The ability to block the expression of these genes allows exploration of normal growth regulation. Progress in antisense technology has been rapid, and the traditional antisense inhibition of gene expression is now viewed on a genomic scale. This global view has led to a new vision in antisense technology, the elimination of nonspecific and undesirable side effects, and ultimately, the generation of more effective and less toxic nucleic acid medicines. Several antisense oligonucleotides are in clinical trials, are well tolerated, and are potentially active therapeutically. Antisense oligonucleotides are promising molecular medicines for treating human cancer in the near future.

A Gene of Neurospora crassa that Encodes a Protein Containing TPR Motifs

  • Lee Bheong-Uk
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.51-54
    • /
    • 2003
  • Analysis of the Neurospora crassa genome data reveals at least 14 proteins that contain tetratricopeptide repeat (TPR) motifs. One of them shows over $60\%$ homology with SSN6 of Saccharomyces cerevisiae, a global repressor that mediates repression of genes involved in various cellular processes. Sequence analysis of its cDNA shows that it encodes a putative 102kDa protein. Mutant strains generated by RIP (repeat induced point mutation) process show four distinctive patterns of vegetative growth at various rates. They are male-fertile, yet all female-sterile and produced little or no perithecium. These results indicate that this gene is pleiotropic and involved in several cellular processes of vegetative growth, conidiation and sexual cycle. It is designated rcm-1(regulation of conidiation and morphology).

  • PDF

Molecular Co-evolution of Gonadotropin-releasing Hormones and Their Receptors

  • Seong, Jae-Young;Kwon, Hyuk-Bang
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.93-98
    • /
    • 2007
  • Gonadotropin-releasing hormone (GnRH), synthesized in the hypothalamus, plays a pivotal role in the regulation of vertebrate reproduction. Since molecular isoforms of GnRH and their receptors (GnRHR) have been isolated in a broad range of vertebrate species, GnRH and GnRHR provide an excellent model for understanding the molecular co-evolution of a peptide ligand-receptor pair. Vertebrate species possess multiple forms of GnRH, which have been created through evolutionary mechanisms such as gene/chromosome duplication, gene deletion and modification. Similar to GnRHs, GnRH receptors (GnRHR) have also been diversified evolutionarily. Comparative ligand-receptor interaction studies for non-mammalian and mammalian GnRHRs combined with mutational mapping studies of GnRHRs have aided the identification of domains or motifs responsible for ligand binding and receptor activation. Here we discuss the molecular basis of GnRH-GnRHR co-evolution, particularly the structure-function relationship regarding ligand selectivity and signal transduction of mammalian and non-mammalian GnRHRs.

Understanding Disease Susceptibility through Population Genomics

  • Han, Seonggyun;Lee, Junnam;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • v.10 no.4
    • /
    • pp.234-238
    • /
    • 2012
  • Genetic epidemiology studies have established that the natural variation of gene expression profiles is heritable and has genetic bases. A number of proximal and remote DNA variations, known as expression quantitative trait loci (eQTLs), that are associated with the expression phenotypes have been identified, first in Epstein-Barr virus-transformed lymphoblastoid cell lines and later expanded to other cell and tissue types. Integration of the eQTL information and the network analysis of transcription modules may lead to a better understanding of gene expression regulation. As these network modules have relevance to biological or disease pathways, these findings may be useful in predicting disease susceptibility.

Genetic Analysis of Kallikrein-Kinin System in the Korean Hypertensives

  • Kang, ByungYong;Bae, Joon Seol;Lee, Kang Oh
    • Animal cells and systems
    • /
    • v.8 no.1
    • /
    • pp.41-47
    • /
    • 2004
  • The kallikrein-kinin system affects regulation of blood pressure, and genes encoding for the components of this system have been considered as good candidates for hypertension. To evaluate the relationship between genetic polymorphisms of candidate genes involved in this system and hypertension, we performed case-control studies using genetic markers in Korean normotensives and hypertensives, respectively. By association study, there was a marginal association with hypertension in AA genotype distribution of A1789G polymorphism in the hKLK1 gene (P=0.0754). Thus, this genetic polymorphism may weakly contribute to the susceptibility to hypertension in Koreans. We also observed that significant linkage disequilibrium exists among three polymorphic sites in the hKLK1 gene studied, suggesting that the three genetic polymorph isms can be useful as genetic markers in clinical association studies. Further studies using larger sample sizes and more genetic markers will be needed to clarify genetic influence of kallikrein-kinin system for hypertension.

In Silico Interaction and Docking Studies Indicate a New Mechanism for PML Dysfunction in Gastric Cancer and Suggest Imatinib as a Drug to Restore Function

  • Imani-Saber, Zeinab;Ghafouri-Fard, Soudeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.5005-5006
    • /
    • 2015
  • Gastric cancer as one of the most common cancers worldwide has various genetic and environmental risk factors including Helicobacter pylori (H.pylori) infection. Recently, loss of a tumor suppressor gene named promyelocytic leukemia (PML) has been identified in gastric cancer. However, no mutation has been found in this gene in gastric cancer samples. Cag A H.pylori protein has been shown to exert post transcriptional regulation of some tumor suppressor genes. In order to assess such a mechanism for PML degradation, we performed in silico analyses to establish any interaction between PML and Cag A proteins. In silico interaction and docking studies showed that these two proteins may have stable interactions. In addition, we showed that imatinib kinase inhibitor can restore PML function by inhibition of casein kinase 2.

Regulation of Glyine max Ornithine Decarboxylase by Salt and Spermine

  • Lee, Yong-Sun;Lee, Geun-Taek;Cho, Young-Dong
    • BMB Reports
    • /
    • v.34 no.5
    • /
    • pp.478-483
    • /
    • 2001
  • We examined the effect of CsCl and spermine on the induction of ornithine decarboxylase (ODC), a key enzyme in polyamine synthesis form Glycine max axes. Transcription of the ODC gene was induced by 0.1 and 1 mM of CsCl, and the amount of putrescine was increased 3.5-fold by 1 mM CsCl treatment. Spermine also induced the expression of the ODC gene in a die dependent manner. However, CsCl provoked an increase in the active phosphorylated ERK (pERK), a central element of the mitogen-activated protein kinase (MAPK) cascade. Our data demonstrates an interaction between the ODC induction and the MAPK signaling pathway, and suggests that the latter may be involved in cell signaling in salt-stressed plants.

  • PDF

Single-molecule fluorescence in situ hybridization: Quantitative imaging of single RNA molecules

  • Kwon, Sunjong
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.65-72
    • /
    • 2013
  • In situ detection of RNAs is becoming increasingly important for analysis of gene expression within and between intact cells in tissues. International genomics efforts are now cataloging patterns of RNA transcription that play roles in cell function, differentiation, and disease formation, and they are demon-strating the importance of coding and noncoding RNA transcripts in these processes. However, these techniques typically provide ensemble averages of transcription across many cells. In situ hybridization-based analysis methods complement these studies by providing information about how expression levels change between cells within normal and diseased tissues, and they provide information about the localization of transcripts within cells, which is important in understanding mechanisms of gene regulation. Multi-color, single-molecule fluorescence in situ hybridization (smFISH) is particularly useful since it enables analysis of several different transcripts simultaneously. Combining smFISH with immunofluorescent protein detection provides additional information about the association between transcription level, cellular localization, and protein expression in individual cells.

Data Mining for Identification of Molecular Targets in Ovarian Cancer

  • Villegas-Ruiz, Vanessa;Juarez-Mendez, Sergio
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1691-1699
    • /
    • 2016
  • Ovarian cancer is possibly the sixth most common malignancy worldwide, in Mexico representing the fourth leading cause of gynecological cancer death more than 70% being diagnosed at an advanced stage and the survival being very poor. Ovarian tumors are classified according to histological characteristics, epithelial ovarian cancer as the most common (~80%). We here used high-density microarrays and a systems biology approach to identify tissue-associated deregulated genes. Non-malignant ovarian tumors showed a gene expression profile associated with immune mediated inflammatory responses (28 genes), whereas malignant tumors had a gene expression profile related to cell cycle regulation (1,329 genes) and ovarian cell lines to cell cycling and metabolism (1,664 genes).