• Title/Summary/Keyword: Gene ontology analysis

Search Result 241, Processing Time 0.021 seconds

Pathway Analysis in HEK 293T Cells Overexpressing HIV-1 Tat and Nucleocapsid

  • Lee, Min-Joo;Park, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1103-1108
    • /
    • 2009
  • The human immunodeficiency virus (HIV)-l protein Tat acts as a transcription transactivator that stimulates expression of the infected viral genome. It is released from infected cells and can similarly affect neighboring cells. The nucleocapsid is an important protein that has a related significant role in early mRNA expression, and which contributes to the rapid viral replication that occurs during HIV-1 infection. To investigate the interaction between the Tat and nucleocapsid proteins, we utilized cDNA micro arrays using pTat and flag NC cotransfection in HEK 293T cells and reverse transcription-polymerase chain reaction to validate the micro array data. Four upregulated genes and nine downregulated genes were selected as candidate genes. Gene ontology analysis was conducted to define the biological process of the input genes. A proteomic approach using PathwayStudio determined the relationship between Tat and nucleocapsid; two automatically built pathways represented the interactions between the upregulated and downregulated genes. The results indicate that the up- and downregulated genes regulate HIV-1 replication and proliferation, and viral entry.

Paradigm of Time-sequence Development of the Intestine of Suckling Piglets with Microarray

  • Sun, Yunzi;Yu, Bing;Zhang, Keying;Chen, Xijian;Chen, Daiwen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1481-1492
    • /
    • 2012
  • The interaction of the genes involved in intestinal development is the molecular basis of the regulatory mechanisms of intestinal development. The objective of this study was to identify the significant pathways and key genes that regulate intestinal development in Landrace piglets, and elucidate their rules of operation. The differential expression of genes related to intestinal development during suckling time was investigated using a porcine genome array. Time sequence profiles were analyzed for the differentially expressed genes to obtain significant expression profiles. Subsequently, the most significant profiles were assayed using Gene Ontology categories, pathway analysis, network analysis, and analysis of gene co-expression to unveil the main biological processes, the significant pathways, and the effective genes, respectively. In addition, quantitative real-time PCR was carried out to verify the reliability of the results of the analysis of the array. The results showed that more than 8000 differential expression transcripts were identified using microarray technology. Among the 30 significant obtained model profiles, profiles 66 and 13 were the most significant. Analysis of profiles 66 and 13 indicated that they were mainly involved in immunity, metabolism, and cell division or proliferation. Among the most effective genes in these two profiles, CN161469, which is similar to methylcrotonoyl-Coenzyme A carboxylase 2 (beta), and U89949.1, which encodes a folate binding protein, had a crucial influence on the co-expression network.

Network Pharmacological Analysis of Cnidii Fructus Treatment for Gastritis (벌사상자의 위염 치료 적용에 대한 네트워크 약리학적 분석)

  • Young-Sik Kim;Seungho Lee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.22-26
    • /
    • 2024
  • The purpose of this study was to identify the applicability, main compounds, and target genes of Cnidii Fructus (CF) in the treatment of gastritis using network pharmacology. The compounds in CF were searched in Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and a database of medicinal materials and chemical compounds in Northeast Asian traditional medicine (TM-MC). The target gene information of the compounds was collected from pubchem and cross-compared with the gastritis-related target gene information collected from Genecard to derive the target genes. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on the derived target genes. Afterwards, network analysis between compounds and disease target genes was performed using cytoscape. We identified 121 active compounds and 139 target genes associated with gastritis. Pathways derived from the GO biological process and KEGG pathway DB primarily focus on target genes related to inflammation (IL-6, IL-8, TNF production, NF-κB transcription factor activity, and NF-κB signaling pathway) and cell death (PI3K-Akt, FoxO). Major targets for CF treatment of gastritis include TP53, TNF, BCL2, EGFR, NFKB1, ABCB1, PPARG, PTGS2, IL6, IL1B, and SOD1, along with major compounds such as coumarin, osthol, hexadecanoic acid, oleic acid, linoleic acid, and stigmasterol. This study provided CF's applicability for gastritis, related compounds, and target information. Evaluating CF's effectiveness in a preclinical gastritis model suggests its potential use in clinical practice for digestive system diseases.

Construction of Gene Network System Associated with Economic Traits in Cattle (소의 경제형질 관련 유전자 네트워크 분석 시스템 구축)

  • Lim, Dajeong;Kim, Hyung-Yong;Cho, Yong-Min;Chai, Han-Ha;Park, Jong-Eun;Lim, Kyu-Sang;Lee, Seung-Su
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.904-910
    • /
    • 2016
  • Complex traits are determined by the combined effects of many loci and are affected by gene networks or biological pathways. Systems biology approaches have an important role in the identification of candidate genes related to complex diseases or traits at the system level. The gene network analysis has been performed by diverse types of methods such as gene co-expression, gene regulatory relationships, protein-protein interaction (PPI) and genetic networks. Moreover, the network-based methods were described for predicting gene functions such as graph theoretic method, neighborhood counting based methods and weighted function. However, there are a limited number of researches in livestock. The present study systemically analyzed genes associated with 102 types of economic traits based on the Animal Trait Ontology (ATO) and identified their relationships based on the gene co-expression network and PPI network in cattle. Then, we constructed the two types of gene network databases and network visualization system (http://www.nabc.go.kr/cg). We used a gene co-expression network analysis from the bovine expression value of bovine genes to generate gene co-expression network. PPI network was constructed from Human protein reference database based on the orthologous relationship between human and cattle. Finally, candidate genes and their network relationships were identified in each trait. They were typologically centered with large degree and betweenness centrality (BC) value in the gene network. The ontle program was applied to generate the database and to visualize the gene network results. This information would serve as valuable resources for exploiting genomic functions that influence economically and agriculturally important traits in cattle.

Full-Length Enriched cDNA Library Construction from Tissues Related to Energy Metabolism in Pigs

  • Lee, Kyung-Tai;Byun, Mi-Jeong;Lim, Dajeong;Kang, Kyung-Soo;Kim, Nam-Soon;Oh, Jung-Hwa;Chung, Chung-Soo;Park, Hae-Suk;Shin, Younhee;Kim, Tae-Hun
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.529-536
    • /
    • 2009
  • Genome sequencing of the pig is being accelerated because of its importance as an evolutionary and biomedical model animal as well as a major livestock animal. However, information on expressed porcine genes is insufficient to allow annotation and use of the genomic information. A series of expressed sequence tags of 5' ends of five full-length enriched cDNA libraries (SUSFLECKs) were functionally characterized. SUSFLECKs were constructed from porcine abdominal fat, induced fat cells, loin muscle, liver, and pituitary gland, and were composed of non-normalized and normalized libraries. A total of 55,658 ESTs that were sequenced once from the 5′ ends of clones were produced and assembled into 17,684 unique sequences with 7,736 contigs and 9,948 singletons. In Gene Ontology analysis, two significant biological process leaf nodes were found: gluconeogenesis and translation elongation. In functional domain analysis based on the Pfam database, the beta transducin repeat domain of WD40 protein was the most frequently occurring domain. Twelve genes, including SLC25A6, EEF1G, EEF1A1, COX1, ACTA1, SLA, and ANXA2, were significantly more abundant in fat tissues than in loin muscle, liver, and pituitary gland in the SUSFLECKs. These characteristics of SUSFLECKs determined by EST analysis can provide important insight to discover the functional pathways in gene networks and to expand our understanding of energy metabolism in the pig.

Mercury Resistance and Removal Mechanisms of Pseudomonas sp. Isolated Mercury-contaminated Site in Taiwan

  • Luo, Kai-Hong;Chen, Ssu-Ching;Liao, Hung-Yu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.5
    • /
    • pp.16-24
    • /
    • 2016
  • A new strain of Pseudomonas sp. was isolated from mercury (Hg)-contaminated sites in Taiwan. This bacterium removed more than 80% of Hg present in the culture medium at 12 h incubation and was chosen for further analysis of the molecular mechanisms of Hg tolerance/removal abilities in this Pseudomonas sp. We used RNA-seq, one of the next-generation sequencing methods, to investigate the transcriptomic responses of the Pseudomonas sp. exposed to 60 mg/L of Hg2+. We de novo assembled 4,963 contigs, of which 10,533 up-regulated genes and 5,451 down-regulated genes were found to be regulated by Hg. The 40 genes most altered in expression levels were associated with tolerance to Hg stress and metabolism. Functional analysis showed that some Hg-tolerant genes were related to the mer operon, sulfate uptake and assimilation, the enzymatic antioxidant system, the HSP gene family, chaperones, and metal transporters. The transcriptome were analyzed further with Gene Ontology (GO) and Cluster of Orthologous Groups (COGs) of proteins and showed diverse biological functions and metabolic pathways under Hg stress.

MET1-Dependent DNA Methylation Represses Light Signaling and Influences Plant Regeneration in Arabidopsis

  • Shim, Sangrea;Lee, Hong Gil;Seo, Pil Joon
    • Molecules and Cells
    • /
    • v.44 no.10
    • /
    • pp.746-757
    • /
    • 2021
  • Plant somatic cells can be reprogrammed into a pluripotent cell mass, called callus, which can be subsequently used for de novo shoot regeneration through a two-step in vitro tissue culture method. MET1-dependent CG methylation has been implicated in plant regeneration in Arabidopsis, because the met1-3 mutant exhibits increased shoot regeneration compared with the wild-type. To understand the role of MET1 in de novo shoot regeneration, we compared the genome-wide DNA methylomes and transcriptomes of wildtype and met1-3 callus and leaf. The CG methylation patterns were largely unchanged during leaf-to-callus transition, suggesting that the altered regeneration phenotype of met1-3 was caused by the constitutively hypomethylated genes, independent of the tissue type. In particular, MET1-dependent CG methylation was observed at the blue light receptor genes, CRYPTOCHROME 1 (CRY1) and CRY2, which reduced their expression. Coexpression network analysis revealed that the CRY1 gene was closely linked to cytokinin signaling genes. Consistently, functional enrichment analysis of differentially expressed genes in met1-3 showed that gene ontology terms related to light and hormone signaling were overrepresented. Overall, our findings indicate that MET1-dependent repression of light and cytokinin signaling influences plant regeneration capacity and shoot identity establishment.

SETDB1 regulates SMAD7 expression for breast cancer metastasis

  • Ryu, Tae Young;Kim, Kwangho;Kim, Seon-Kyu;Oh, Jung-Hwa;Min, Jeong-Ki;Jung, Cho-Rok;Son, Mi-Young;Kim, Dae-Soo;Cho, Hyun-Soo
    • BMB Reports
    • /
    • v.52 no.2
    • /
    • pp.139-144
    • /
    • 2019
  • Breast cancer (BRC) is the most invasive cancer in women. Although the survival rate of BRC is gradually increasing due to improved screening systems, development of novel therapeutic targets for inhibition of BRC proliferation, metastasis and recurrence have been constantly needed. Thus, in this study, we identified overexpression of SETDB1 (SET Domain Bifurcated 1), a histone methyltransferase, in RNA-seq data of BRC derived from TCGA portal. In Gene Ontology (GO) analysis, cell migration-related GO terms were enriched, and we confirmed down-regulation of cell migration/invasion and alteration of EMT /MET markers after knockdown of SETDB1. Moreover, gene network analysis showed that SMAD7 expression is regulated by SETDB1 levels, indicating that up-regulation of SMAD7 by SETDB1 knockdown inhibited BRC metastasis. Therefore, development of SETDB1 inhibitors and functional studies may help develop more effective clinical guidelines for BRC treatment.

Gene Profiles in a Smoke-Induced COPD Mouse Lung Model Following Treatment with Mesenchymal Stem Cells

  • Kim, You-Sun;Kokturk, Nurdan;Kim, Ji-Young;Lee, Sei Won;Lim, Jaeyun;Choi, Soo Jin;Oh, Wonil;Oh, Yeon-Mok
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.728-733
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) effectively reduce airway inflammation and regenerate the alveolus in cigarette- and elastase-induced chronic obstructive pulmonary disease (COPD) animal models. The effects of stem cells are thought to be paracrine and immune-modulatory because very few stem cells remain in the lung one day after their systemic injection, which has been demonstrated previously. In this report, we analyzed the gene expression profiles to compare mouse lungs with chronic exposure to cigarette smoke with non-exposed lungs. Gene expression profiling was also conducted in a mouse lung tissue with chronic exposure to cigarette smoke following the systemic injection of human cord blood-derived mesenchymal stem cells (hCB-MSCs). Globally, 834 genes were differentially expressed after systemic injection of hCB-MSCs. Seven and 21 genes, respectively, were up-and downregulated on days 1, 4, and 14 after HCB-MSC injection. The Hbb and Hba, genes with oxygen transport and antioxidant functions, were increased on days 1 and 14. A serine protease inhibitor was also increased at a similar time point after injection of hCB-MSCs. Gene Ontology analysis indicated that the levels of genes related to immune responses, metabolic processes, and blood vessel development were altered, indicating host responses after hCB-MSC injection. These gene expression changes suggest that MSCs induce a regeneration mechanism against COPD induced by cigarette smoke. These analyses provide basic data for understanding the regeneration mechanisms promoted by hCB-MSCs in cigarette smoke-induced COPD.

Expression of Coat Color Associated Genes in Korean Brindle Cattle by Microarray Analysis

  • Lee, Hae-Lee;Park, Jae-Hee;Kim, Jong Gug
    • Journal of Embryo Transfer
    • /
    • v.30 no.2
    • /
    • pp.99-107
    • /
    • 2015
  • The aim of the present study was to identify coat color associated genes that are differentially expressed in mature Korean brindle cattle (KBC) with different coat colors and in Hanwoo cows. KBC calves, before and after coat color appearance, were included. Total cellular RNA was isolated from the tail hair cells and used for microarray. The number of expressed coat color associated genes/probes was 5813 in mature KBC and Hanwoo cows. Among the expressed coat color associated genes/probes, 167 genes were the coat color associated genes listed in the Gene card database and 125 genes were the pigment and melanocyte genes listed in the Gene ontology_bovine database. There were 23 genes/probes commonly listed in both databases and their expressions were further studied. Out of the 23 genes/probes, MLPH, PMEL, TYR and TYRP1 genes were expressed at least two fold higher (p<0.01) levels in KBC with brindle color than either Hanwoo or KBC with brown color. TYRP1 expression was 22.96 or 19.89 fold higher (p<0.01) in KBC with brindle color than either Hanwoo or KBC with brown color, respectively, which was the biggest fold difference. The hierarchical clustering analysis indicated that MLPH, PMEL, TYR and TYRP1 were the highly expressed genes in mature cattle. There were only a few genes differentially expressed after coat color appearance in KBC calves. Studies on the regulation and mechanism of gene expression of highly expressed genes would be next steps to better understand coat color determination and to improve brindle coat color appearance in KBC.