• Title/Summary/Keyword: Gene ontology analysis

Search Result 241, Processing Time 0.023 seconds

Effects of deoxynivalenol- and zearalenone-contaminated feed on the gene expression profiles in the kidneys of piglets

  • Reddy, Kondreddy Eswar;Lee, Woong;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Woon;Yu, Dongjo;Cho, Ara;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.138-148
    • /
    • 2018
  • Objective: Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEN), common contaminants in the feed of farm animals, cause immune function impairment and organ inflammation. Consequently, the main objective of this study was to elucidate DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the kidneys of piglets. Methods: Fifteen 6-week-old piglets were randomly assigned to three dietary treatments for 4 weeks: control diet, and diets contaminated with either 8 mg DON/kg feed or 0.8 mg ZEN/kg feed. Kidney samples were collected after treatment, and RNA-seq was used to investigate the effects on immune-related genes and gene networks. Results: A total of 186 differentially expressed genes (DEGs) were screened (120 upregulated and 66 downregulated). Gene ontology analysis revealed that the immune response, and cellular and metabolic processes were significantly controlled by these DEGs. The inflammatory stimulation might be an effect of the following enriched Kyoto encyclopedia of genes and genomes pathway analysis found related to immune and disease responses: cytokine-cytokine receptor interaction, chemokine signaling pathway, toll-like receptor signaling pathway, systemic lupus erythematosus (SLE), tuberculosis, Epstein-Barr virus infection, and chemical carcinogenesis. The effects of DON and ZEN on genome-wide expression were assessed, and it was found that the DEGs associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9, CXCL10, chemokine [C-C motif] ligand 4), proliferation (insulin like growth factor binding protein 4, IgG heavy chain, receptor-type tyrosine-protein phosphatase C, cytochrome P450 1A1, ATP-binding cassette sub-family 8), and other immune response networks (lysozyme, complement component 4 binding protein alpha, oligoadenylate synthetase 2, signaling lymphocytic activation molecule-9, ${\alpha}$-aminoadipic semialdehyde dehydrogenase, Ig lambda chain c region, pyruvate dehydrogenase kinase, isozyme 4, carboxylesterase 1), were suppressed by DON and ZEN. Conclusion: In summary, our results indicate that high concentrations of DON and ZEN suppress the inflammatory response in kidneys, leading to potential effects on immune homeostasis.

Effect of ciglitazone on adipogenic transdifferentiation of bovine skeletal muscle satellite cells

  • Zhang, Junfang;Li, Qiang;Yan, Yan;Sun, Bin;Wang, Ying;Tang, Lin;Wang, Enze;Yu Jia;Nogoy, Kim Margarette Corpuz;Li, Xiangzi;Choi, Seong-Ho
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.934-953
    • /
    • 2021
  • Ciglitazone is a member of the thiazolidinedione family, and specifically binds to peroxisome proliferator-activated receptor-γ (PPARγ), thereby promoting adipocyte differentiation. We hypothesized that ciglitazone as a PPARγ ligand in the absence of an adipocyte differentiation cocktail would increase adiponectin and adipogenic gene expression in bovine satellite cells (BSC). Muscle-derived BSCs were isolated from six, 18-month-old Yanbian Yellow Cattle. The BSC were cultured for 96 h in differentiation medium containing 5 µM ciglitazone (CL), 10 µM ciglitazone (CM), or 20 µM ciglitazone (CH). Control (CON) BSC were cultured only in a differentiation medium (containing 2% horse serum). The presence of myogenin, desmin, and paired box 7 (Pax7) proteins was confirmed in the BSC by immunofluorescence staining. The CL, CM, and CH treatments produced higher concentrations of triacylglycerol and lipid droplet accumulation in myotubes than those of the CON treatment. Ciglitazone treatments significantly increased the relative expression of PPARγ, CCAAT/enhancer-binding protein alpha (C/EBPα), C/EBPβ, fatty acid synthase, stearoyl-CoA desaturase, and perilipin 2. Ciglitazone treatments increased gene expression of Pax3 and Pax7 and decreased expression of myogenic differentiation-1, myogenin, myogenic regulatory factor-5, and myogenin-4 (p < 0.01). Adiponectin concentration caused by ciglitazone treatments was significantly greater than CON (p < 0.01). RNA sequencing showed that 281 differentially expressed genes (DEGs) were found in the treatments of ciglitazone. DEGs gene ontology (GO) analysis showed that the top 10 GO enrichment significantly changed the biological processes such as protein trimerization, negative regulation of cell proliferation, adipocytes differentiation, and cellular response to external stimulus. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that DEGs were involved in the p53 signaling pathway, PPAR signaling pathway, biosynthesis of amino acids, tumor necrosis factor signaling pathway, non-alcoholic fatty liver disease, PI3K-Akt signaling pathway, and Wnt signaling pathway. These results indicate that ciglitazone acts as PPARγ agonist, effectively increases the adiponectin concentration and adipogenic gene expression, and stimulates the conversion of BSC to adipocyte-like cells in the absence of adipocyte differentiation cocktail.

Reliability of microarray analysis for studying periodontitis: low consistency in 2 periodontitis cohort data sets from different platforms and an integrative meta-analysis

  • Jeon, Yoon-Seon;Shivakumar, Manu;Kim, Dokyoon;Kim, Chang-Sung;Lee, Jung-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.1
    • /
    • pp.18-29
    • /
    • 2021
  • Purpose: The aim of this study was to compare the characteristic expression patterns of advanced periodontitis in 2 cohort data sets analyzed using different microarray platforms, and to identify differentially expressed genes (DEGs) through a meta-analysis of both data sets. Methods: Twenty-two patients for cohort 1 and 40 patients for cohort 2 were recruited with the same inclusion criteria. The 2 cohort groups were analyzed using different platforms: Illumina and Agilent. A meta-analysis was performed to increase reliability by removing statistical differences between platforms. An integrative meta-analysis based on an empirical Bayesian methodology (ComBat) was conducted. DEGs for the integrated data sets were identified using the limma package to adjust for age, sex, and platform and compared with the results for cohorts 1 and 2. Clustering and pathway analyses were also performed. Results: This study detected 557 and 246 DEGs in cohorts 1 and 2, respectively, with 146 and 42 significantly enriched gene ontology (GO) terms. Overlapping between cohorts 1 and 2 was present in 59 DEGs and 18 GO terms. However, only 6 genes from the top 30 enriched DEGs overlapped, and there were no overlapping GO terms in the top 30 enriched pathways. The integrative meta-analysis detected 34 DEGs, of which 10 overlapped in all the integrated data sets of cohorts 1 and 2. Conclusions: The characteristic expression pattern differed between periodontitis and the healthy periodontium, but the consistency between the data sets from different cohorts and metadata was too low to suggest specific biomarkers for identifying periodontitis.

Identification of the Genes Involved in the Fruiting Body Production and Cordycepin Formation of Cordyceps militaris Fungus

  • Zheng, Zhuang-Li;Qiu, Xue-Hong;Han, Ri-Chou
    • Mycobiology
    • /
    • v.43 no.1
    • /
    • pp.37-42
    • /
    • 2015
  • A mutant library of Cordyceps militaris was constructed by improved Agrobacterium tumefaciens-mediated transformation and screened for degradation features. Six mutants with altered characters in in vitro and in vivo fruiting body production, and cordycepin formation were found to contain a single copy T-DNA. T-DNA flanking sequences of these mutants were identified by thermal asymmetric interlaced-PCR approach. ATP-dependent helicase, cytochrome oxidase subunit I and ubiquitin-like activating enzyme were involved in in vitro fruiting body production, serine/threonine phosphatase involved in in vivo fruiting body production, while glucose-methanol-choline oxidoreductase and telomerase reverse transcriptase involved in cordycepin formation. These genes were analyzed by bioinformatics methods, and their molecular function and biology process were speculated by Gene Ontology (GO) analysis. The results provided useful information for the control of culture degeneration in commercial production of C. militaris.

Sequencing and Characterization of Divergent Marbling Levels in the Beef Cattle (Longissimus dorsi Muscle) Transcriptome

  • Chen, Dong;Li, Wufeng;Du, Min;Wu, Meng;Cao, Binghai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.158-165
    • /
    • 2015
  • Marbling is an important trait regarding the quality of beef. Analysis of beef cattle transcriptome and its expression profile data are essential to extend the genetic information resources and would support further studies on beef cattle. RNA sequencing was performed in beef cattle using the Illumina High-Seq2000 platform. Approximately 251.58 million clean reads were generated from a high marbling (H) group and low marbling (L) group. Approximately 80.12% of the 19,994 bovine genes (protein coding) were detected in all samples, and 749 genes exhibited differential expression between the H and L groups based on fold change (>1.5-fold, p<0.05). Multiple gene ontology terms and biological pathways were found significantly enriched among the differentially expressed genes. The transcriptome data will facilitate future functional studies on marbling formation in beef cattle and may be applied to improve breeding programs for cattle and closely related mammals.

A protein interactions map of multiple organ systems associated with COVID-19 disease

  • Bharne, Dhammapal
    • Genomics & Informatics
    • /
    • v.19 no.2
    • /
    • pp.14.1-14.6
    • /
    • 2021
  • Coronavirus disease 2019 (COVID-19) is an on-going pandemic disease infecting millions of people across the globe. Recent reports of reduction in antibody levels and the re-emergence of the disease in recovered patients necessitated the understanding of the pandemic at the core level. The cases of multiple organ failures emphasized the consideration of different organ systems while managing the disease. The present study employed RNA sequencing data to determine the disease associated differentially regulated genes and their related protein interactions in several organ systems. It signified the importance of early diagnosis and treatment of the disease. A map of protein interactions of multiple organ systems was built and uncovered CAV1 and CTNNB1 as the top degree nodes. A core interactions sub-network was analyzed to identify different modules of functional significance. AR, CTNNB1, CAV1, and PIK3R1 proteins were unfolded as bridging nodes interconnecting different modules for the information flow across several pathways. The present study also highlighted some of the druggable targets to analyze in drug re-purposing strategies against the COVID-19 pandemic. Therefore, the protein interactions map and the modular interactions of the differentially regulated genes in the multiple organ systems would incline the scientists and researchers to investigate in novel therapeutics for the COVID-19 pandemic expeditiously.

Transcriptome analysis of iBET-151, a BET inhibitor alone and in combination with paclitaxel in gastric cancer cells

  • Kang, Sun Kyoung;Bae, Hyun Joo;Kwon, Woo Sun;Che, Jingmin;Kim, Tae Soo;Chung, Hyun Cheol;Rha, Sun Young
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.37.1-37.11
    • /
    • 2020
  • BET inhibitor, as an epigenetic regulator inhibitor, reduces the expression of oncogenes such as Myc and Bcl-2, which affects cancer growth and development. However, it has modest activity because of the narrow therapeutic index. Therefore, combination therapy is necessary to increase the anti-tumor effect. Paclitaxel, an anti-mitotic inhibitor, is used as second-line therapy for gastric cancer (GC) as a monotherapy or combination. In this study, we performed RNA sequencing of GC cells treated with iBET-151 and/or paclitaxel to identify the differentially expressed genes associated with possible mechanisms of synergistic effect. We also performed Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses to determine the most enriched terms and pathways of upregulated and downregulated genes. We found 460 genes in which iBET-151 and paclitaxel combination treatment changed more than single-treatment or no-treatment. Thus, additional functional studies are needed, but our results provide the first evidence of the synergistic effect between iBET-151 and paclitaxel in regulating the transcriptome of GC cells.

Resistance of Bovine Colostrum Exosomes to Bacterial Infection by Regulating Iimmunity in Caenorhabditis elegans Model

  • Minkyoung Kang;Minji Kang;Sangnam Oh
    • Journal of Dairy Science and Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.35-47
    • /
    • 2024
  • Milk exosomes contain several bioactive molecules, including lipids, proteins, and miRNAs, which enhance immune response. This study aimed to assess the resistance effects of bovine colostrum exosomes (BCEs) on pathogenic microbial infections in a Caenorhabditis elegans model. BCEs have been shown to enhance the protective response of C. elegans to pathogenic bacterial infections. Our study revealed that BCE extended the lifespan of worms compared to control OP50 worms. In addition, nematode colostrum exosomes promoted nematode resistance to four pathogenic bacteria and prolonged their lifespan in a killing assay. In contrast, mature milk-derived exosomes (BME) did not affect the resistance and lifespan of nematodes exposed to pathogenic bacteria. BCE exposure extended the lifespan of C. elegans against pathogenic infections by stimulating the innate immune response and increasing antimicrobial protein expression. Using biological process-related gene ontology (GO) enrichment analysis, the significantly upregulated GO terms related to C. elegans immunity in BCE-exposed C. elegans included defense, innate immunity, and immune responses. This study demonstrated that BCE enhanced the host defense of C. elegans to prolong its lifespan, thereby suggesting a new natural product against infection by pathogenic bacteria.

Systemic Analysis of Antibacterial and Pharmacological Functions of Scutellariae Radix (시스템 약리학적 분석에 의한 황금의 항균효과)

  • Kim, Hyo Jin;Bak, Se Rim;Ha, Hee Jung;Kim, Youn Sook;Lee, Boo Kyun;An, Won Gun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.184-190
    • /
    • 2020
  • This study was performed to find antibacterial substances contained in Scutellariae Radix (SR) using a systems pharmacological analysis method and to establish an effective strategy for the prevention and treatment of infectious diseases. Analysis of the main active ingredients of SR was performed using Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database and Analysis Platform. 36 active compounds were screened by the parameter values of Drug-Likeness (DL), Oral Bioavailability (OB), and Caco-2 permeability (Caco-2), which were based on the drug absorption, distribution, metabolism, and excretion indicators. The UniProt database was used to obtain information on 159 genes associated with active compounds. The main active compounds with antibacterial effects were wogonin, β-sitosterol, baicalein, acacetin and oroxylin-A. Target proteins associated with the antibacterial action were chemokine ligand 2, interleukin-6, tumor necrosis factor, caspase-8,9 and mitogen-activated protein kinase 14. In the future, systems pharmacological analysis of traditional medicine will be able to make it easy to find the important mechanism of action of active substances present in natural medicines and to optimize the efficacy of medicinal effects for combinations of major ingredients to help treat certain diseases.

Identification of Candidate Genes Associated with Beef Marbling Using QTL and Pathway Analysis in Hanwoo (Korean Cattle)

  • Park, Hye-Sun;Seo, Seong-Won;Cho, Yong-Min;Oh, Sung-Jong;Seong, Hwan-Hoo;Lee, Seung-Hwan;Lim, Da-Jeong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.5
    • /
    • pp.613-620
    • /
    • 2012
  • Marbling from intramuscular fat is an important trait of meat quality and has an economic benefit for the beef industry. Quantitative trait loci (QTL) fine mapping was performed to identify the marbling trait in 266 Hanwoo steers using a 10K single nucleotide polymorphism panel with the combined linkage and linkage disequilibrium method. As a result, we found nine putative QTL regions for marbling: three on BTA6, two on BTA17, two on BTA22, and two on BTA29. We detected candidate genes for marbling within 1 cM of either side of the putative QTL regions. Additionally, to understand the functions of these candidate genes at the molecular level, we conducted a functional categorization using gene ontology and pathway analyses for those genes involved in lipid metabolism or fat deposition. In these putative QTL regions, we found 95 candidate genes for marbling. Using these candidate genes, we found five genes that had a direct interaction with the candidate genes. We also found SCARB1 as a putative candidate gene for marbling that involves fat deposition related to cholesterol transport.