• 제목/요약/키워드: Gene ontology

검색결과 303건 처리시간 0.011초

Differential Expression of Gene Profiles in MRGX-treated Lung Cancer

  • Kwon, Yong-Kyun;Lee, Seung-Yeul;Kang, Hwan-Soo;Sung, Jung-Suk;Cho, Chong-Kwan;Yoo, Hwa-Seung;Shin, Seungjin;Choi, Jong-Soon;Lee, Yeon-Weol;Jang, Ik-Soon
    • 대한약침학회지
    • /
    • 제16권3호
    • /
    • pp.30-38
    • /
    • 2013
  • Objectives: Modified regular ginseng extract (MRGX) has stronger anti-cancer activity-possessing gensenoside profiles. Methods: To investigate changes in gene expression in the MRGX-treated lung cancer cells (A549), we examined genomic data with cDNA microarray results. After completing the gene-ontology-based analysis, we grouped the genes into up-and down-regulated profiles and into ontology-related regulated genes and proteins through their interaction network. Results: One hundred nine proteins that were up- and down-regulated by MRGX were queried by using IPA. IL8, MMP7 and PLAUR and were found to play a major role in the anti-cancer activity in MRGX-treated lung cancer cells. These results were validated using a Western blot analysis and a semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis. Conclusions: Most MRGX-responsive genes are up-regulated transiently in A549 cells, but down-regulated in a sustained manner in lung cancer cells.

에이전트 기반의 벼 기능 유전자 통합 데이터베이스 (An agent-based integrated database for rice functional genomics)

  • 이기열;신문수;안수영;정동훈;안진흥;정무영
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2006년도 춘계공동학술대회 논문집
    • /
    • pp.1702-1706
    • /
    • 2006
  • In the field of rice research, insertional mutants have become a valuable resource for studies of gene function. However, a well-designed database yet in the area of rice functional genomics. The relevant data are widely distributed and independently managed by the individual research groups. Heterogeneous data format in the distributed database systems causes many problems related to redundancy and compatibility. In this research, integration of the distributed databases using agent technology is pursued. In particular, a data integration agent, an ontology agent, a comparison agent, and resource agents are designed, whereby the integrated database is maintained. Moreover a framework for the web-based information system, which provides information to biologists and permits biologists to add new data to the database, is proposed. To establish an interoperable data format, an XML-based data model is also developed adopting ontology concept.

  • PDF

한우 cDNA 라이브러리에서 발현된 ESTs의 기능분석 (Functional Analysis of Expressed Sequence Tags from Hanwoo (Korean Cattle) cDNA Libraries)

  • 임다정;변미정;조용민;윤두학;이승환;신윤희;임석기
    • Journal of Animal Science and Technology
    • /
    • 제51권1호
    • /
    • pp.1-8
    • /
    • 2009
  • 본 연구는 한우의 지방, 간, 등심조직에서 유전자 염기서열을 확보하여 생산된 57,598개의 유전자 발현단편 데이터의 기능규명을 실시하였다. 유전자 발현단편 서열은 Assembly 과정을 통하여 unique한 서열인 4,759 contigs와 7,587 singletons을 확보하였으며, 얻어진 전사체를 이용하여 NCBI의 non-redundant 단백질 데이터베이스에 대하여 서열유사성 검색 (BLAST)을 하여 유전자의 기능을 예측할 수 있었다. 또한 기능에 대한 모호성을 확실히 하기 위해 Gene Ontology 용어를 사용하여 한우의 세 조직에서 확보된 서열들의 생물학적 특성을 기술하였다. Gene Ontology 는 모든 기능이 계층적으로 표현되어 있기 때문에, 각 계층에 대하여 유의적인 기능 여부를 확인하기 위하여 통계 분석인 Pearson's chi-square test를 실시하여 통계적으로 유의한 기능들을 산출할 수 있었다. 그 결과, Molecular function, Biological process, Cellular component 각각의 GO category에서 13, 16, 8개의 유의적인 GO terms이 검출되었다. 또한, 한우의 세 조직에 대하여 조직특이적 유전자의 존재여부를 판단하기 위하여 Audic's test를 실시하여 세 조직에서 각각 조직특이적으로 발현되는 유전자들을 검출할 수 있었다. 이러한 생물정보학적 방법들을 사용하여 한우의 세 조직에서 발현된 대량의 서열들에 대한 기능을 예측할 수 있었으며, 통계 검증을 통하여 유의적으로 검출된 유전자들은 추후에 실험적 검증을 실시하여 충분한 정보를 확보할 수 있을 것으로 사료된다.

RDFS + OWL을 이용한 생물학적 데이터의 지식 표현과 추출 (Knowledge Representation and Extraction of Biological Data using RDFS + OWL)

  • 이승희;신문수;정무영
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.1136-1141
    • /
    • 2003
  • Due to the lack of digitally usable standards, it has been known to be difficult to handle the biological data. For example, the name of genes and proteins changes over time or has several synonyms indicating different entities. To cope with these problems, several communities, including the Gene Ontology Consortium and PubGene are making their efforts to move science toward the semantic web vision. Although some progress has been made, its expressivity is not sufficient for full-fledged ontological modeling and reasoning. This paper suggests a methodology for representing and extracting biological knowledge by using Web Ontology Language (OWL) as an extension of Resource Description Framework Schema (RDFS). Some benefits of our approach are: (1) to ensure extended sharing of biological meta data on the Web, and (2) to enrich additional expressivity and the semantics of RDFS+OWL.

  • PDF

Improved Algorithms for the Identification of Yeast Proteins and Significant Transcription Factor and Motif Analysis

  • Lee Seung-Won;Hong Seong-Eui;Lee Kyoo-Yeol;Choi Do-Il;Chung Hae-Young;Hur Cheol-Goo
    • Genomics & Informatics
    • /
    • 제4권2호
    • /
    • pp.87-93
    • /
    • 2006
  • With the rapid development of MS technologiesy, the demands for a more sophisticated MS interpretation algorithm haves grown as well. We have developed a new protein fingerprinting method using a binomial distribution, (fBIND). With the fBIND, we improved the performance accuracy of protein fingerprinting up to the maximum 49% (more than MOWSE) and 2% than(at a previous binomial distribution approach studied by of Wool et al.) as compared to the established algorithms. Moreover, we also suggest a the statistical approach to define the significance of transcription factors and motifs in the identified proteins based on the Gene Ontology (GO). Abbreviations: fBIND, fingerprinting using binomial distribution; GO, Gene Ontology; MS, Mass Spectrometry; PMF, peptide mass fingerprinting; nr, nonredundant; SGD, Saccharomyces Genome Database

유전자 온톨로지와 연계한 단백질 상호작용 네트워크 시각화 시스템 (Protein Interaction Network Visualization System Combined with Gene Ontology)

  • 최윤규;김석;이관수;박진아
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제36권2호
    • /
    • pp.60-67
    • /
    • 2009
  • 단백질 상호작용 네트워크는 어떤 단백질들 간에 상호 작용 관계가 있는지를 네트워크 형태로 나타낸 것이며 단백질 상호작용을 발견하거나 분석하는 것은 생명 공학에서 중요한 연구분야이다. 본 논문에서는 방대한 단백질 상호작용 데이터를 유전자 온톨로지와 연계한 시각화를 통하여 효과적으로 직관을 얻을 수 있는 효율적인 단백질 상호작용 네트워크 분석시스템을 다룬다. 단백질 상호작용 네트워크는 데이터 양이 매우 방대하기 때문에 이를 효율적으로 분석하는 방법과 효과적인 시각화 기법이 요구된다. 본 연구에서는 이를 위하여 동적이고 상호작용 가능한 그래프와 관심 노드와 그 주변 노드를 표시하며 점진적으로 탐색할 수 있는 컨텍스트 기반 탐색 기법을 도입하였다. 이 밖에도 특화된 기능으로써 단백질 상호작용과 유전자 온톨로지 간의 빠르고 자유로운 상호참조 기능과 최소 공통 조상을 사용한 유전자 온톨로지 분석 기능 등을 지원한다. 인터페이스 측면에서는 상호참조 기능을 효과적으로 사용하게 하기 위하여 유전자 온톨로지 그래프와 단백질 상호작용의 시각화 결과를 2차원 윈도우로 나란히 보여주는 인터페이스를 디자인 하였다.

Differential Gene Expression Common to Acquired and Intrinsic Resistance to BRAF Inhibitor Revealed by RNA-Seq Analysis

  • Ahn, Jun-Ho;Hwang, Sung-Hee;Cho, Hyun-Soo;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • 제27권3호
    • /
    • pp.302-310
    • /
    • 2019
  • Melanoma cells have been shown to respond to BRAF inhibitors; however, intrinsic and acquired resistance limits their clinical application. In this study, we performed RNA-Seq analysis with BRAF inhibitor-sensitive (A375P) and -resistant (A375P/Mdr with acquired resistance and SK-MEL-2 with intrinsic resistance) melanoma cell lines, to reveal the genes and pathways potentially involved in intrinsic and acquired resistance to BRAF inhibitors. A total of 546 differentially expressed genes (DEGs), including 239 up-regulated and 307 down-regulated genes, were identified in both intrinsic and acquired resistant cells. Gene ontology (GO) analysis revealed that the top 10 biological processes associated with these genes included angiogenesis, immune response, cell adhesion, antigen processing and presentation, extracellular matrix organization, osteoblast differentiation, collagen catabolic process, viral entry into host cell, cell migration, and positive regulation of protein kinase B signaling. In addition, using the PAN-THER GO classification system, we showed that the highest enriched GOs targeted by the 546 DEGs were responses to cellular processes (ontology: biological process), binding (ontology: molecular function), and cell subcellular localization (ontology: cellular component). Ingenuity pathway analysis (IPA) network analysis showed a network that was common to two BRAF inhibitorresistant cells. Taken together, the present study may provide a useful platform to further reveal biological processes associated with BRAF inhibitor resistance, and present areas for therapeutic tool development to overcome BRAF inhibitor resistance.

Analysis of Expressed Sequence Tags from the Wood-Decaying Fungus Fomitopsis palustris and Identification of Potential Genes Involved in the Decay Process

  • Karim, Nurul;Shibuya, Hajime;Kikuchi, Taisei
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권4호
    • /
    • pp.347-358
    • /
    • 2011
  • Fomitopsis palustris, a brown-rot basidiomycete, causes the most destructive type of decay in wooden structures. In spite of its great economic importance, very little information is available at the molecular level regarding its complex decay process. To address this, we generated over 3,000 expressed sequence tags (ESTs) from a cDNA library constructed from F. palustris. Clustering of 3,095 high-quality ESTs resulted in a set of 1,403 putative unigenes comprising 485 contigs and 918 singlets. Homology searches based on BlastX analysis revealed that 78% of the F. palustris unigenes had a significant match to proteins deposited in the nonredundant databases. A subset of F. palustris unigenes showed similarity to the carbohydrateactive enzymes (CAZymes), including a range of glycosyl hydrolase (GH) family proteins. Some of these CAZyme-encoded genes were previously undescribed for F. palustris but predicted to have potential roles in biodegradation of wood. Among them, we identified and characterized a gene (FpCel45A) encoding the GH family 45 endoglucanase. Moreover, we also provided functional classification of 473 (34%) of F. palustris unigenes using the Gene Ontology hierarchy. The annotated EST data sets and related analysis may be useful in providing an initial insight into the genetic background of F. palustris.

Differential Gene Expression Profiling in Human Promyelocytic Leukemia Cells Treated with Benzene and Ethylbenzene

  • Sarma, Sailendra Nath;Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제4권4호
    • /
    • pp.267-277
    • /
    • 2008
  • Benzene and ethylbenzene (BE), the volatile organic compounds (VOCs) are common constituents of cleaning and degreasing agents, paints, pesticides, personal care products, gasoline and solvents. VOCs are evaporated at room temperature and most of them exhibit acute and chronic toxicity to human. Chronic exposure of benzene is responsible for myeloid leukemia and also ethylbenzene is also recognized as a possible carcinogen. To evaluate the BE effect on human, whole human genome 35 K oligonucleotide microarray were screened for the identification of the differential expression profiling. We identified 280 up-regulated and 201 down-regulated genes changed by more than 1.5 fold by BE exposure. Functional analysis was carried out by using DAVID bioinformatics software. Clustering of these differentially expressed genes were associated with immune response, cytokine-cytokine receptor interaction, toll-like signaling pathway, small cell lung cancer, immune response, apoptosis, p53 signaling pathway and MAPKKK cascade possibly constituting alternative or subordinate pathways of hematotoxicity and immune toxicity. Gene ontology analysis methods including biological process, cellular components, molecular function and KEGG pathway thus provide a fundamental basis of the molecular pathways through BEs exposure in human lymphoma cells. This may provides a valuable information to do further analysis to explore the mechanism of BE induced hematotoxicity.

GSnet: An Integrated Tool for Gene Set Analysis and Visualization

  • Choi, Yoon-Jeong;Woo, Hyun-Goo;Yu, Ung-Sik
    • Genomics & Informatics
    • /
    • 제5권3호
    • /
    • pp.133-136
    • /
    • 2007
  • The Gene Set network viewer (GSnet) visualizes the functional enrichment of a given gene set with a protein interaction network and is implemented as a plug-in for the Cytoscape platform. The functional enrichment of a given gene set is calculated using a hypergeometric test based on the Gene Ontology annotation. The protein interaction network is estimated using public data. Set operations allow a complex protein interaction network to be decomposed into a functionally-enriched module of interest. GSnet provides a new framework for gene set analysis by integrating a priori knowledge of a biological network with functional enrichment analysis.