• Title/Summary/Keyword: Gene expressions

Search Result 720, Processing Time 0.024 seconds

Amygdalin Modulates Cell Cycle Regulator Genes in Human Chronic Myeloid Leukemia Cells

  • Park, Hae-Jeong;Baik, Haing-Woon;Lee, Seong-Kyu;Yoon, Seo-Hyun;Zheng, Long-Tai;Yim, Sung-Vin;Hong, Seon-Pyo;Chung, Joo-Ho
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.159-165
    • /
    • 2006
  • To determine the anticancer effect of D-amygdalin (D-mandelinitrole-${\beta}$-D-gentiobioside) in human chronic myeloid leukemia cells K562, we profiled the gene expression between amygdalin treatment and control groups. Through 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, the cytotoxicity of D-amygdalin was $57.79{\pm}1.83%$ at the concentration of 5 mg/mL for 24 h. We performed cDNA microarray analysis and compared the gene expression profiles between D-amygdalin (5 mg/mL, 24 h) treatment and control groups. Among the genes changed by D-amygdalin, we paid attention to cell cycle-related genes, and particularly cell cycle regulator genes; because arrest of cell cycle processing was ideal tactic in remedy for cancer. In our data, expressions of cyclin-dependent kinase inhibitor 1B (p27, Kip1) (CDKN1B), ataxia telangiectasia mutated (includes complementation groups A, C, and D) (ATM), cyclin-dependent kinase inhibitor 1C (p57, Kip2) (CDKN1C), and CHK1 checkpoint homolog (CHEK1, formally known as CHK1) were increased, while expressions of cyclin-dependent kinase 2 (CDK2), cell division cycle 25A (CDC25A), and cyclin E1 (CCNE1) were decreased. The pattern of these gene expressions were confirmed through RT-PCR. Our results showed that D-amygdalin might control cell cycle regulator genes and arrest S phase of cell cycle in K562 cells as the useful anticancer drug.

Comparative Analysis of Platelet-rich Plasma Effect on Tenocytes from Normal Human Rotator Cuff Tendon and Human Rotator Cuff Tendon with Degenerative Tears

  • Yoon, Jeong Yong;Lee, Seung Yeon;Shin, Sue;Yoon, Kang Sup;Jo, Chris Hyunchul
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.1
    • /
    • pp.3-14
    • /
    • 2018
  • Background: Platelet-rich plasma (PRP) stimulates cell proliferation and enhances matrix gene expression and synthesis. However, there have been no comparative study of the PRP effect on the normal and degenerative tenocytes. The purpose of this study was to compare the effect of PRP on tenocytes from normal and degenerative tendon. Methods: Tendon tissues were obtained from patients undergoing arthroscopic repair (n=9) and from healthy donors (n=3). Tenocytes were cultured with 10% (vol/vol) platelet-poor plasma, PRP activated with calcium, and PRP activated with calcium and thrombin. The total cell number was assessed at days 7 and 14. The expressions of type I and III collagen, decorin, tenascin-C, and scleraxis were evaluated by quantitative real-time reverse transcriptase polymerase chain reaction. The total collagen and glycosaminoglycan (GAG) synthesis was evaluated at days 7 and 14. Results: No differences were observed between the groups at day 7, but cell proliferation was remarkably increased in tenocytes from the degenerative tendon at day 14. In both tenocyte groups, the gene expressions of type I and III collagen were up-regulated. GAG synthesis was greater in the normal tendon, whereas the expressions of decorin and tenascin-C were increased in tenocytes from the degenerative tendon. Tenocytes from the degenerative tendon had higher fold-change of GAG synthesis and a lower collagen III/I ratio than normal tenocytes. Conclusions: PRP promoted the cell proliferation and enhanced the synthesis of tendon matrix in both groups. PRP has a greater positive effect on cell proliferation, matrix gene expression and synthesis in tenocytes from degenerative tendon.

Responses of HSP Gene Expressions to Elevated Water Temperature in the Nile tilapia Oreochromis niloticus

  • Kwon, Joon-Yeong;Kim, Ju-Yeong
    • Development and Reproduction
    • /
    • v.14 no.3
    • /
    • pp.179-184
    • /
    • 2010
  • Water temperature influences on various key biological events in fish, but the internal pathway of the temperature effects are not well understood. Heat shock proteins (HSPs), known to respond in the level of cells to many environmental factors including temperature, could improve our understanding on the pathway. Some biological processes such as gonadal development and sex differentiation in the Nile tilapia Oreochromis niloticus is particularly sensitive to water temperature. In this study, we have investigated the expressions of HSP70 and HSP90 genes in young tilapia at an ordinary temperature ($28^{\circ}C$) and elevated water temperature ($36^{\circ}C$). The distribution of the expressions of HSP70 and HSP90 mRNA in this species were found to be almost ubiquitous, being detected in all tissues studied here (brain, gonad, liver and muscle), suggesting the house keeping functions of these genes. Heat shock by elevating temperature from $28^{\circ}C$ to $36^{\circ}C$ significantly increased the expression of HSP70 mRNA in the gonad, liver and muscle for several hours (P<0.05) (brain tissue was not examined for this). The increased level of HSP70 gene expression recovered to the level at control temperature ($28^{\circ}C$) when fish were kept continuously at high temperature ($36^{\circ}C$) for 24 hours. Contrary to this, expression of HSP90 mRNA did not show significant increase in the gonad and muscle by the same heat shock (P>0.05), except in the liver where the expression of HSP90 mRNA increased continuously for 24 hours at $36^{\circ}C$. The results obtained in this study suggest that response to temperature change in different tissue or organ may utilize different heat shock proteins, and that HSP70 may have some importance in temperature-sensitive gonadal event in the Nile tilapia.

Anti-inflammatory effect of (-)-epigallocatechin-3-gallate on Porphyromonas gingivalis lipopolysaccharide-stimulated fibroblasts and stem cells derived from human periodontal ligament

  • Jung, Im-Hee;Lee, Dong-Eun;Yun, Jeong-Ho;Cho, Ah-Ran;Kim, Chang-Sung;You, Yoon-Jeong;Kim, Sung-Jo;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.6
    • /
    • pp.185-195
    • /
    • 2012
  • Purpose: (-)-epigallocatechin-3-gallate (EGCG) has been reported to exert anti-inflammatory and antibacterial effects in periodontitis. However, its exact mechanism of action has yet to be determined. The present in vitro study evaluated the anti-in-flammatory effects of EGCG on human periodontal ligament fibroblasts (hPDLFs) and human periodontal ligament stem cells (hPDLSCs) affected by bacterial lipopolysaccharide (LPS) extracted from Porphyromonas gingivalis. Methods: hPDLFs and hPDLSCs were extracted from healthy young adults and were treated with EGCG and/or P. gingivalis LPS. After 1, 3, 5, and 7 days from treatment, cytotoxic and proliferative effects were evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and bromodeoxyuridine assay, respectively. And then, the gene expressions of hPDLFs and hPDLSCs were observed for interleukin (IL)-$1{\beta}$, IL-6, tumor necrosis factor (TNF)-${\alpha}$, osteoprotegerin (OPG), receptor activator of nuclear factor kappa-B ligand (RANKL), and RANKL/OPG using real-time polymerase chain reaction (PCR) at 0, 6, 24, and 48 hours after treatment. The experiments were performed with the following groups for hPDLFs and hPDLSCs; 1) No treat, 2) EGCG alone, 3) P. gingivalis LPS alone, 4) EGCG+P. gingivalis LPS. Results: The 20 ${\mu}M$ of EGCG and 20 ${\mu}g/mL$ of P. gingivalis LPS had the lowest cytotoxic effects, so those concentrations were used for further experiments. The proliferations of hPDLFs and hPDLSCs increased in all groups, though the 'EGCG alone' showed less increase. In real-time PCR, the hPDLFs and hPDLSCs of 'EGCG alone' showed similar gene expressions to those cells of 'no treat'. The gene expressions of 'P. gingivalis LPS alone' in both hPDLFs and hPDLSCs were highly increased at 6 hours for IL-$1{\beta}$, IL-6, TNF-${\alpha}$, RANKL, and RANKL/OPG, except the RANKL/OPG in hPDLSCs. However, those increased gene expressions were down-regulated in 'EGCG+P. gingivalis LPS' by the additional treatment of EGCG. Conclusions: Our results demonstrate that EGCG could exert an anti-inflammatory effect in hPDLFs and hPDLSCs against a major pathogen of periodontitis, P. gingivalis LPS.

Differential Expression of EGFR Protein by Immunohistochemical Staining Methods and the Relationship Between the Degree of EGFR Protein Expression and EGFR Gene Mutation (면역조직화학적 염색 방법에 따른 상피세포 성장 수용체 단백(EGFR)의 발현정도의 차이 및 EGFR의 발현정도와 EGFR 유전자의 돌연변이와의 상관관계에 대한 고찰)

  • Yoon, In-Sook;Kim, Keuk-Jun;Lee, Eun-Hwa;Seok, Sang-Hee;Kim, Sang-Hee;Kim, Hyun-Yong;Song, Ho-Jung;Lee, Tae-Jong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.39 no.3
    • /
    • pp.217-222
    • /
    • 2007
  • In the last 5 years the Epidermal Growth Factor Receptor (EGFR) has emerged as one of the most important targets for drug development in oncology. Monoclonal antibodies targeting the external domain of EGFR have been shown to have clinical benefits in colorectal and head and neck cancer when combined with chemotherapy and/or radiation. Also the targeting of the epithelial growth factor receptor (EGFR) kinase domain using the closely related inhibitors gefitinib and erlotinib has generally been ineffective against solid tumors, many of which over express the receptor. We found that there were some differential expressions according to primary antibodies of the EGFR protein which being used as one of the histological tumor markers for non-small cell lung cancer (NSCLC). We also found that there are some differential expressions according to antibodies, the pH of the antigen retrieval (AR) buffer solutions and kinds of enzymes. There were some differential expressions according to the secondary antibodies and the detection systems. We analyzed the correlations between the immunohistochemical expressions of the EGFR protein and the gene mutations of the EGFR. The differences between automatic stainers and manual staining methods were also evaluated.

  • PDF

Expression of p53, CD44v6 and VEGF in Gastric Adenocarcinomas (위선암종의 예후인자로서 p53, CD44v6과 VEGF 단백 발현)

  • Park, Eon-Sub;Lee, Chang-Young;Lee, Tae-Jin;Kim, Mi-Kyung;Yoo, Jae-Hyung
    • Journal of Gastric Cancer
    • /
    • v.1 no.1
    • /
    • pp.10-16
    • /
    • 2001
  • Purpose: The p53 protein is a tumor supressor gene, and its mutation is associated with biologic aggressiveness. CD44v6, one of the CD44 family, is a cell surface glycoprotein that plays a role in cancer invasion and metastasis. Vascular endothelial growth factor (VEGF) is another recently identified growth factor with significant angiogenic properties. The purpose of this study was to investigate p53, CD44v6, and VEGF expressions to determine whether degree of expression was related to pathological parameters such as Lauren's classification, depth of invasion, and lymph node metastasis. Materials and Methods: Immunohistochemical stains of p53, CD44v6, and VEGF in formalin-fixed paraffin-embedded tissue sections of 125 gastric adenocarcinomas were done. Results: The overall expression rates of p53, CD44v6, and VEGF were $54.4\%$ (68/125), $36.8\%$ (46/125), and $48.0\%$ (60/125), respectively. The p53, not CD44v6 and VEGF was higher in intestinal-type gastric carcinomas by Lauren's classification. The expressions of p53, CD44v6, and VEGF were statistically correlated with depth of tumor invasion. The expression of CD44v6 was higher in the lymph node metastatic group than in the negative group. The p53 expression was significantly associated with VEGF expression. Conclusions: These data suggest that the expressions of p53, CD44v6, and VEGF are biologically related to malignancy. The p53 and CD44v6 expressions are independent; however, p53 gene mutation is one of the contributing factors to VEGF expression in gastric adenocarcinoma.

  • PDF

Expression of Multidrug Resistance-associated Protein (MRP), c-myc and c-fos in L1210 Cells (L1210 암세포에서 Multidrug Resistance-associated Protein (MRP), c-myc 및 c-fos 유전자의 발현양상)

  • Kim, Seong-Yong
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.1
    • /
    • pp.67-76
    • /
    • 1997
  • The occurrence of multidrug resistance (MDR) is one of the main obstacles in the successful chemotherapeutic treatment of cancer. In this study The gene expressions of multidrug resistance-associated protein (MRP), c-myc and c-fos were investigated in L1210 cells. Adriamycin- or vincristine-resistant L1210 cells, L1210AdR or L1210VcR, respectively, has been identified to overexpression of mdr1 gene. The expression leve of MRP gene in L1210AdR and L1210Cis was more decreased than that in L1210 cells. The c-myc and c-fos genes were expressed both in L1210 and resistant sublines. In L1210AdR, the expressions level of c-myc and c-fos genes were decreased than in L1210. However, in L1210VcR and L1210Cis, c-myc and c-fosgene expressionwere rather increased than L1210. These results suggested that MRP does not contribute in resistance of drug-resistant L1210 cells and there is no relations between MRP and mdr1 gene expression. The expression of c-myc and c-fos gene may be changed during transformation of L1210 to drug-resistant sublines.

  • PDF

Expression of Antioxidant Isoenzyme Genes in Rice under Salt Stress and Effects of Jasmonic Acid and ${\gamma}$-Radiation

  • Kim, Jin-Hong;Chung, Byung-Yeoup;Baek, Myung-Hwa;Wi, Seung-Gon;Yang, Dae-Hwa;Lee, Myung-Chul;Kim, Jae-Sung
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Analysis of chlorophyll (Chl) fluorescence implicated treatment of 40 mM NaCl decreased maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm), actual quantum yield of PSII (${\Phi}_{PSII}$), and photochemical quenching (qP) in rice, but increased non-photochemical quenching (NPQ). Decreases in Fv/Fm, ${\Phi}_{PSII}$, and qP were significantly alleviated by $30\;{\mu}M$ jasmonic acid (JA), while NPQ increase was enhanced. Transcription levels of antioxidant isoenzyme genes were differentially modulated by NaCl treatment. Expression of cCuZn-SOD2 gene increased, while those of cAPXb, CATb, and CATc genes decreased. JA prevented salt-induced decrease of pCuZn-SOD gene expression, but caused greater decrease in mRNA levels of cAPXa and Chl_tAPX genes. Investigation of vacuolar $Na^+/H^+$ exchanger (NHX2) and 1-pyrroline-5-carboxylate synthetase (P5CS) gene expressions revealed transcription level of NHX2 gene was increased by JA, regardless of NaCl presence, while that of P5CS gene slightly increased only in co-presence of JA and NaCl. Unlike JA, ${\gamma}$-radiation rarely affected expressions of antioxidant isoenzyme, NHX2, and P5CS genes, except for increase in mRNA level of Chl_tAPX and decrease in that of pCuZn-SOD. These results demonstrate enhanced salt-tolerance in JA-treated rice seedlings may be partly due to high transcription levels of pCuZn-SOD, NHX2, and P5CS genes under salt stress.

Expression of Luteinizing Hormone (LH) and Its Receptor Gene in Uterus from Cycling Rats (발정 주기중 흰쥐 자궁에서의 Luteinizing Hormone (LH)과 수용체 유전자 발현)

  • Kim, Sung-Rye;Lee, Sung-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.3
    • /
    • pp.383-387
    • /
    • 1999
  • Objective: There is increasing evidence for the expression of rat in gene in several extrapituitary sites including testis and ovary. We also have demonstrated that the local LH expression in the rat epididymis and uterus, the major accessory sex organs in male and female reproductive system, respectively. Design: The present study was undertaken to elucidate whether the gene for LH receptor is expressed in rat uterus and whether the expressions of uterine LH and its receptor are differentially regulated during estrous cycle. Presence of the transcripts for rat LH receptor in the rat uterine tissue were confirmed by touchdown reverse transcription-polymerase chain reaction (RT-PCR). Results: In $LH{\beta}$ semi-quantitative RT-PCR, the highest expression level was shown in estrus stage. The level of ill receptor transcripts was also fluctuated during estrous cycle. In ovariectomized rats (OVX + Oil), the expressions of both uterine LH and LH-R were markedly reduced when compared to those from normal rats. Supplement with estradiol $17{\beta}$ to the ovariectomized rats (OVX + $E_2$) restored the expression levels of LH and its receptor to the levels in uteri from normal rats. Conclusion: Our findings indicated that 1) LH and its receptor gene are expressed in the rat uterus from cycling rats, 2) the expression of uterine LH and its receptor is mainly, if not all, under the control of ovarian sex steroid(s). These results suggested that the uterine LH may act as a local regulator with auto and/or paracrine manner, though the posibility that the pituitary LH may act directly on the regulation of uterine functions could not be discarded.

  • PDF

The Molecular Biomarker Genes Expressions of Rearing Species Chironomus riparious and Field Species Chironomus plumosus Exposure to Heavy Metals (실내종 Chironomus riparious와 야외종 Chironomus plumosus의 중금속 노출에 따른 분자지표 유전자 발현)

  • Kim, Won-Seok;Kim, Rosa;Park, Kiyun;Chamilani, Nikapitiya;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.86-94
    • /
    • 2015
  • Chironomous is aquatic insect belonging to order Diptera, family Chironomidae. Their larval stage can be found mainly in aquatic benthic environment, hence good model organism to study environmental toxicology assessments and consider as useful bio indicators of contamination of the aquatic environment. In this study, Chironomus Heat Shock Proteins, Cytochrome 450, Glutathione S-transferase, Serine-type endopeptidase gene expressions were compared between polluted field areas (Chironomus plumosus) and under laboratory conditions (Chironomus riparious) to investigate molecular indicators for environmental contaminant stress assessment. Heavy metal (Al, Fe, Mn, Cu, Cr, Zn, Se, Pb, As, Cd) concentrations in sediments collected from three study areas exceeded the reference values. Moreover, HSPs, CYP450 and GST gene expression except SP for C. plumosus showed higher expression than C. riparious gene expression. Similar gene expression pattern was observed in C. riparious that exposed environment waters up to 96 h when compared to C. plumosus exposed to waters that grown in lab conditions. In summary, this comparative gene expression analysis in Chironomous between field and laboratory condition gave useful information to select candidate molecular indicators in heavy metal contaminations in the environment.