• Title/Summary/Keyword: Gene Screening

Search Result 792, Processing Time 0.038 seconds

Detection of infectious canine hepatitis virus by TaqMan real-time PCR method (TaqMan 실시간 PCR법에 의한 개 전염성 간염 바이러스의 검출)

  • Wang, Hye-young;Choi, Jae-yong;Lee, Mi-jin;Park, Jin-ho;Cho, Mae-Rim;Han, Jae-cheol;Choi, Kyoung-seong;Chae, Joon-seok
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.4
    • /
    • pp.655-662
    • /
    • 2004
  • The aim of this work was the validation of a rapid real-time PCR assay based on TaqMan technology for the unequivocal identification of infectious canine hepatitis (ICH) virus, to be used directly on DNA purified from blood specimens. A real-time PCR system targeting at the E3 ORFA gene sequence of canine adenovirus type 1 was optimized and validated through comparative analysis of samples using conventional PCR system. The real-time PCR assay based on TaqMan technology could disclose 23 (37.7%) out of 61 samples as PCR positive. In contrast, 18 (29.5%) samples were found PCR positive when conventional PCR was applied on these samples. The use of the ABI Prism 7700 sequence detection system allowed the efficient determination of the amplified product accumulation through a fluorogenic probe. The entire real-time TaqMan PCR assay, including DNA extraction, amplification, and detection could be completed within 3 hours. The detection method of real-time TaqMan PCR assay was 1,000 times more sensitive than conventional PCR. Real-time TaqMan probe and primer set developed and optimized in this study is a sensitive, rapid and accurate method for detection of ICH virus and can be effective screening tool for the detection of ICH in a diagnostic laboratory routines.

Biofilm Forming Ability and Production of Curli and Cellulose in Clinical Isolates of Enterobacteriaceae (생물막형성 장내세균의 Curli 및 Cellulose 세포외 바탕질 분석)

  • Choi, Yeh-Wan;Lee, Hee-Woo;Kim, Sung-Min;Lee, Je-Chul;Lee, Yoo-Chul;Seol, Sung-Yong;Cho, Dong-Taek;Kim, Jung-Min
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.335-341
    • /
    • 2011
  • In this study, 22 clinical isolates of Enterobacteriaceae including Citrobacterfreundii (6 strains), Enterobacter cloacae (5 strains), Enterobacter aerogenes (3 strains), Serratia marcescens (7 strains) and Pantoea spp. (1 strain) were investigated for the biofilm forming ability and biosynthesis of curli and cellulose. Biofilm forming ability was the highest among the isolates of E. cloacae and the lowest among the isolates of E. aerogenes. The expression of the biofilm-forming extracellular matrix components, cellulose and curli fimbriae, was examined by Congo-red (CR) staining and calcofluor staining methods. PCR screening for the presence of curli gene (csgA) revealed that 4 strains of E. cloacae and 1 strain of C. freundii carried the csgA, showing a good correlation between the phenotypic detection of curli fimbriae by CR staining method and the genotypic detection of curli gene by PCR in E. cloacae.

Bacterial Toxin-antitoxin Systems and Their Biotechnological Applications (박테리아의 toxin-antitoxin system과 생명공학기술 응용)

  • Kim, Yoonji;Hwang, Jihwan
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.265-274
    • /
    • 2016
  • Toxin-antitoxin (TA) systems are ubiquitous genetic modules that are evolutionally conserved in bacteria and archaea. TA systems composed of an intracellular toxin and its antidote (antitoxin) are currently classified into five types. Commonly, activation of toxins under stress conditions inhibits diverse cellular processes and consequently induces cell death or reversible growth inhibition. These effects of toxins play various physiological roles in such as regulation of gene expression, growth control (stress response), programmed cell arrest, persister cells, programmed cell death, phage protection, stabilization of mobile genetic elements or postsegregational killing of plasmid-free cells. Accordingly, bacterial TA systems are commonly considered as stress-responsive genetic modules. However, molecule screening for activation of toxin in TA system is available as development of antimicrobial agents. In addition, cytotoxic effect induced by toxin is used as effective cloning method with antitoxic effect of antitoxin; consequently cells containing cloning vector inserted a target gene can survive and false-positive transformants are removed. Also, TA system is applicable to efficient single protein production in biotechnology industry because toxins that are site-specific ribonuclease inhibit protein synthesis except for target protein. Furthermore, some TA systems that induce apoptosis in eukaryotic cells such as cancer cells or virus-infected cells would have a wide range of applications in eukaryotes, and it will lead to new ways of treating human disease. In this review, we summarize the current knowledge on bacterial TA systems and their applications.

The spy-gfp Operon Fusion in Salmonella Enteritidis and Salmonella Gallinarum Senses the Envelope Stress (Salmonella Enteritidis와 Salmonella Gallinarum의 세균막 스트레스를 인식하는 spy-gfp 오페론 융합)

  • Kang, Bo Gyeong;Bang, Iel Soo
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.208-219
    • /
    • 2018
  • Emergence of drug resistant strains of Salmonella enterica threatens milk processing and related dairy industries, thereby increasing the need for development of new anti-bacterials. Developments of antibacterial drugs are largely aimed to target the bacterial envelope, but screening their efficacy on bacterial envelope is laborious. This study presents a potential biosensor for envelope-specific stress in which a gfp reporter gene fused to spy gene encoding a periplasmic chaperone protein Spy (spheroplast protein y) that can sense envelope stress signals transduced by two major two-component signal transduction systems BaeSR and CpxAR in Salmonella enterica serovars Enteritidis and S. Gallinarum. Using spy-gfp operon fusions in S. Enterititis and S. Gallinarum, we found that spy transcription in both serovars was greatly induced when Salmonella cells were forming the spheroplast and were treated with ethanol or a membrane-disrupting antibiotic polymyxin B. These envelope stress-specific inductions of spy transcription were abrogated in mutant Salmonella lacking either BaeR or CpxR. Results illustrate that induction of Spy expression can be efficiently triggered by two-component signal transduction systems sensing envelope stress conditions, and thereby suggest that monitoring the spy transcription by spy-gfp operon fusions would be helpful to determine if developing antimicrobials can damage envelopes of S. Enteritidis and S. Gallinarum.

vfr, A Global Regulatory Gene, is Required for Pyrrolnitrin but not for Phenazine-1-carboxylic Acid Biosynthesis in Pseudomonas chlororaphis G05

  • Wu, Xia;Chi, Xiaoyan;Wang, Yanhua;Zhang, Kailu;Kai, Le;He, Qiuning;Tang, Jinxiu;Wang, Kewen;Sun, Longshuo;Hao, Xiuying;Xie, Weihai;Ge, Yihe
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.351-361
    • /
    • 2019
  • In our previous study, pyrrolnitrin produced in Pseudomonas chlororaphis G05 plays more critical role in suppression of mycelial growth of some fungal pathogens that cause plant diseases in agriculture. Although some regulators for pyrrolnitrin biosynthesis were identified, the pyrrolnitrin regulation pathway was not fully constructed. During our screening novel regulator candidates, we obtained a white conjugant G05W02 while transposon mutagenesis was carried out between a fusion mutant $G05{\Delta}phz{\Delta}prn::lacZ$ and E. coli S17-1 (pUT/mini-Tn5Kan). By cloning and sequencing of the transposon-flanking DNA fragment, we found that a vfr gene in the conjugant G05W02 was disrupted with mini-Tn5Kan. In one other previous study on P. fluorescens, however, it was reported that the deletion of the vfr caused increased production of pyrrolnitrin and other antifungal metabolites. To confirm its regulatory function, we constructed the vfr-knockout mutant $G05{\Delta}vfr$ and $G05{\Delta}phz{\Delta}prn::lacZ{\Delta}vfr$. By quantifying ${\beta}-galactosidase$ activities, we found that deletion of the vfr decreased the prn operon expression dramatically. Meanwhile, by quantifying pyrrolnitrin production in the mutant $G05{\Delta}vfr$, we found that deficiency of the Vfr caused decreased pyrrolnitrin production. However, production of phenazine-1-carboxylic acid was same to that in the wild-type strain G05. Taken together, Vfr is required for pyrrolnitrin but not for phenazine-1-carboxylic acid biosynthesis in P. chlororaphis G05.

SNP Markers Useful for the Selection of Yellow-fleshed Peach Cultivar (황육계 복숭아 품종 선발용 SNP 마커)

  • Kim, Se Hee;Kwon, Jung-hyun;Cho, Kang Hee;Shin, Il Sheob;Jun, Ji Hae;Cho, Sang-Yun
    • Korean Journal of Plant Resources
    • /
    • v.34 no.5
    • /
    • pp.443-450
    • /
    • 2021
  • Peach flesh color is commercially important criteria for classification and has implications for nutritional quality. To breed new yellow-fleshed peach cultivar many cross seedlings and generations should be maintained. Therefore it is necessary to develop early selection molecular markers for screening cross seedlings and germplasm with economically important traits to increase breeding efficiency. For the comparison of transcription profiles in peach varieties with a different flesh color expression, two cDNA libraries were constructed. Differences in gene expression between yellow-fleshed peach cultivar, 'Changhowon Hwangdo' and white-fleshed peach cultivar, 'Mibaekdo' were analyzed by next-generation sequencing (NGS). Expressed sequence tag (EST) of clones from the two varieties was selected for nucleotide sequence determination and homology searches. Putative single nucleotide polymorphisms (SNPs) were screened from peach EST contigs by high resolution melting (HRM) analysis, SNP ID ppa002847m:cds and ppa002540m:cds displayed specific difference between 17 yellow-fleshed and 21 white-fleshed peach varieties. The SNP markers for distinguishing yellow and white fleshed peach varieties by HRM analysis offers the opportunity to use early selection. This SNP markers could be useful for marker assisted breeding and provide a good reference for relevant research on molecular mechanisms of color variation in peach varieties.

Phenylketonuria: Current Treatments and Future Developments (페닐케톤뇨증의 치료: 현재와 미래)

  • Lee, Jeongho
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.20 no.2
    • /
    • pp.37-43
    • /
    • 2020
  • Phenylketonuria is the most prevalent disorder caused by an inborn error in aminoacid metabolism. It results from mutations in the phenylalanine hydroxylase (PAH) gene. If untreated or late treated, results in profound and irreversible mental disability. Newborn screening test identify patients with phenylketouria. The early initiation of a phenylalanine restricted diet very soon prevents most of the neuropsychiatric complications. However, the diet therapy is difficult to maintain and compliance is poor, especially in adolescents and adulthood. Since 2015, American Medical College of Medical Genetics and Genomics (ACMG) recommended more strong restrictive diet therapy for target blood level of phenylalanine (<360 umol/L). For over four decades the only treatment was a very restrictive low phenylalanine diet. This changed in 2007 with the approval of cofactor therapy (Tetrahydrobiopterin, BH4) which is effective in up to 30% of patients. Data from controlled clinical trials with sapropterin dihydrochloride indicate a similar occurrence of all-cause adverse events with this treatment and placebo. Large neutral aminoacids (LNAA) competes with phenylalanine for transport across the blood-brain-barrier and have a beneficial effect on executive functioning. A new therapy has just been approved that can be effective in most patients with PAH deficiency regardless of their degree of enzyme deficiency or the severity of their phenotype. Phenylalanine ammonia lyase (PAL-PEG) was approved in the USA by FDA in May of 2018 for adult patients with uncontrolled blood phenylalanine concentrations on current treatment. Nucleic acid therapy (therapeutic mRNA or gene therapy) is likely to provide longer term solutions with few side effects.

A Case of Propionic Acidemia Presenting with Dilated Cardiomyopathy (확장성 심근병증으로 발현된 프로피온산혈증 1례)

  • Son, Jisoo;Choi, Yoon-Ha;Seo, Go Hun;Kang, Minji;Lee, Beom Hee
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.21 no.1
    • /
    • pp.22-27
    • /
    • 2021
  • Propionic acidemia (PA) is an inherited autosomal recessive disorder, due to the deficiency of propionyl-CoA carboxylase (PCC). PCC is the enzyme which catalyzes the conversion of propionyl-CoA to D-methylmalonyl-CoA, and it is critical for the metabolism of amino acids, odd-chain fatty acids, and side chains of cholesterol. The clinical manifestations present mostly at the neonatal period with life-threatening metabolic acidosis and hyperammonemia. Here, we described a case of a 16-year-old Korean boy with late-onset PA who presented with embolic cerebral infarction due to dilated cardiomyopathy (DCMP) with left ventricular noncompaction. And he has family history of sudden cardiac death, so we performed metabolic screening and genetic tests. Elevated levels of 3-hydroxypropionic acid, methylcitric acid and propionylglycerine were detected in urine. Plasma acylcarnitine profile showed elevated propionylcarnitine (C3). Diagnosis of PA was confirmed by genetic analysis, which revealed compound heterozygous mutations, c.[1151T>G] (p.[Phe384Cys]) and c.[1228C>T] (p.[Arg410Trp]) in PCCB gene. His heart function is in improving state and the results of biochemical analysis are stable with heart failure medication and metabolic managements. We present a case of patient without episodes of metabolic decompensation who manifests DCMP as the first symptom of PA.

Culture Conditions of E. coli Harboring Human O-Linked N-Acetyl-${\beta}$-Glucosaminidase Gene and Enzymatic Properties (사람의 O-linked-N-acetyl-${\beta}$-D-glucosaminidase 유전자를 함유한 대장균의 배양조건과 효소학적 특성)

  • 강대욱;조용권;서현효
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.147-153
    • /
    • 2004
  • Protein modification by N-acetyl-${\beta}$-D-glucosamine (O-G1cNAc) on the hydroxyl groups of Ser or Thr ubiq-uitously occurs in eukaryotic cells and is involved in many cellular phenomena. The level of O-G1cNAc-mod-ified protein is regulated by OGT and O-GlcNAcase enzymes. We have tried to produce recombinant O-GlcNAcase in E. coli as an effort to establish in vitro screening system for modulators of O-GlcNAcase. The culture conditions for improvement of O-GlcNAcase productivity, were as follows: induction temperature, $30^{\circ}C$; the concentration of L-arabinose, 0.02% and induction time, 5 hr. Under these culture conditions, E. coli cells containing O-GlcNAcase gene had no enzyme activity until up to 3 hr culture. However, O-GlcNAcase activity dramatically increased from 3 to 5 hr culture. It almost maintained the same level after 5 hr culture. Western blot analysis verified the amount of expressed O-GlcNAcase increased with culture time, being con-sistent with activity data. The optimal reaction condition determined in this study was as follows: protein quan-tity, $5{\mu}g$; reaction time, 30 min; reaction temperature, $45^{\circ}C$; substrate concentration, 2 mM; reaction pH, 6.5. Methanol had little effect on O-GlcNAcase activity and 90% of activity were retained at 10%. Only 15% resid-ual activity were detected at 5% of chloroform.

Development and Validation of an SNP Marker for Identifying Xanthomonas oryzae pv. oryzae Thai Isolates That Break xa5-Mediated Bacterial Blight Resistance in Rice

  • Tebogo Balone;Ananda Nuryadi Pratama;Werapat Chansongkram;Thanita Boonsrangsom;Kawee Sujipuli;Kumrop Ratanasut
    • The Plant Pathology Journal
    • /
    • v.40 no.5
    • /
    • pp.451-462
    • /
    • 2024
  • Xanthomonas oryzae pv. oryzae (Xoo) is a pathogenic bacterium responsible for bacterial blight (BB) disease in rice, primarily mediated by the interaction between the plant and pathogen. The virulence mechanism involves the activation of the Sugars Will Eventually be Exported Transporter (SWEET) gene family in rice by transcription activator-like effectors derived from Xoo. The BB resistance gene xa5 has been identified as one of the most effective genes against Thai Xoo isolates, but xa5-mediated resistance-breaking Xoo strains have emerged. This study aimed to develop a single nucleotide polymorphism (SNP) marker for precise identification of xa5-mediated resistance-breaking Xoo. Comparative genomics of Thai Xoo isolates Xoo16PK001 and Xoo16PK002, which were incompatible and compatible with rice variety IRBB5 carrying xa5, respectively, identified eight SNP positions for the development of an SNP marker. The SNP marker XooE6 yields a specific 1,143 bp PCR product unique to Xoo16PK002. Screening 61 Thai isolates using XooE6 identified two positives: Xoo20PL010 and Xoo20UT002. Inoculation tests on rice varieties IRBB5 and IRBB13 demonstrated compatibility with IRBB5 and incompatibility with IRBB13, which bears Xa5 and xa13. Xoo16PK001 (XooE6-negative) showed different virulence. Inoculation on IRBB21 harboring Xa5, Xa13, and Xa21 resulted in partial resistance to both XooE6-positive and -negative strains. XooE6-positive strains up-regulated SWEET11 and suppressed SWEET14 in IRBB5, while Xoo16PK001 slightly induced SWEET11 but activated SWEET14 in IRBB13. This highlights the potential of XooE6 to identify xa5-mediated resistance-breaking Xoo strains and elucidate their pathogenic mechanisms through the upregulation of SWEET11.