Browse > Article

Biofilm Forming Ability and Production of Curli and Cellulose in Clinical Isolates of Enterobacteriaceae  

Choi, Yeh-Wan (Department of Microbiology, School of Medicine, Kyungpook National University)
Lee, Hee-Woo (Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University)
Kim, Sung-Min (Division of Magnetic Resonance Research, Korea Basic Science Institute)
Lee, Je-Chul (Department of Microbiology, School of Medicine, Kyungpook National University)
Lee, Yoo-Chul (Department of Microbiology, School of Medicine, Kyungpook National University)
Seol, Sung-Yong (Department of Microbiology, School of Medicine, Kyungpook National University)
Cho, Dong-Taek (Department of Microbiology, School of Medicine, Kyungpook National University)
Kim, Jung-Min (Department of Microbiology, School of Medicine, Kyungpook National University)
Publication Information
Korean Journal of Microbiology / v.47, no.4, 2011 , pp. 335-341 More about this Journal
Abstract
In this study, 22 clinical isolates of Enterobacteriaceae including Citrobacterfreundii (6 strains), Enterobacter cloacae (5 strains), Enterobacter aerogenes (3 strains), Serratia marcescens (7 strains) and Pantoea spp. (1 strain) were investigated for the biofilm forming ability and biosynthesis of curli and cellulose. Biofilm forming ability was the highest among the isolates of E. cloacae and the lowest among the isolates of E. aerogenes. The expression of the biofilm-forming extracellular matrix components, cellulose and curli fimbriae, was examined by Congo-red (CR) staining and calcofluor staining methods. PCR screening for the presence of curli gene (csgA) revealed that 4 strains of E. cloacae and 1 strain of C. freundii carried the csgA, showing a good correlation between the phenotypic detection of curli fimbriae by CR staining method and the genotypic detection of curli gene by PCR in E. cloacae.
Keywords
csgA; Enterobacteriaceae; biofilm; curli; cellulose;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Costerton, J.W., P.S. Stewart, and E.P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318-1322.   DOI
2 Crump, J.A. and P.J. Collignon. 2000. Intravascular catheterassociated infections. Eur. J. Clin. Microbiol. Infect. Dis. 19, 1-8.   DOI   ScienceOn
3 Donlan, R.M. 2000. Role of biofilms in antimicrobial resistance. ASAIO J. 46, 47-52.   DOI   ScienceOn
4 Donlan, R.M. and J.W. Costerton 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167-193.   DOI   ScienceOn
5 Dunne, W.M. Jr. 2002. Bacterial adhesion: seen any good biofilms lately? Clin. Microbiol. Rev. 15, 155-166.   DOI   ScienceOn
6 El-Azizi, M., S. Rao, T. Kanchanapoom, and N. Khardori. 2005. In vitro activity of vancomycin, quinupristin/dalfopristin, and linezolid against intact and disrupted biofilms of staphylococci. Ann. Clin. Microbiol. Antimicrob. 4, 2.   DOI
7 Gerstel, U. and U. Romling. 2001. Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella typhimurium. Environ. Microbiol. 3, 638-648.   DOI   ScienceOn
8 Heilmann, C., M. Hussain, G. Peters, and F. Gotz. 1997. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol. Microbiol. 29, 1013-1024.
9 Gerstel, U. and U. Romling. 2003. The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium. Res. Microbiol. 154, 659-667.   DOI   ScienceOn
10 Gilbert, P., J. Das, and I. Foley. 1997. Biofilm susceptibility to antimicrobials. Adv. Dent. Res. 11, 160-167.   DOI   ScienceOn
11 Norwood, D.E. and A. Gilmour. 2000. The growth and resistance to sodium hypochlorite of Listeria monocytogenes in a steadystate multispecies biofilm. J. Appl. Microbiol. 88, 512- 520.   DOI   ScienceOn
12 Larsen, T. and N.E. Fiehn. 1996. Resistance of Streptococcus sanguis biofilms to antimicrobial agents. APMIS 104, 280-284.   DOI   ScienceOn
13 Mah, T.F. and G.A. O'Toole. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9, 34-39.   DOI   ScienceOn
14 Mittelman, M.W. 1999. Recovery and characterization of biofilm bacteria associated with medical devices. Methods Enzymol. 310, 534-551.
15 Raad, I. 1998. Intravascular-catheter-related infections. Lancet 351, 893-898.   DOI   ScienceOn
16 Trautner, B.W. and R.O. Darouiche. 2004. Role of biofilm in catheter-associated urinary tract infection. Am. J. Infect. Control 32, 177-183.   DOI   ScienceOn
17 Romling, U., Z. Bian, M. Hammar, W.D. Sierralta, and S. Normark. 1998. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J. Bacteriol. 180, 722-731.
18 Romling, U., M. Rohde, A. Olsen, S. Normark, and J. Reinkoster. 2000. AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol. Microbiol. 36, 10-23.   DOI   ScienceOn
19 Romling, U. 2005. Characterization of the rdarmorphotype, a multicellular behaviour in Enterobacteriaceae. Cell. Mol. Life Sci. 62, 1234-1246.   DOI   ScienceOn
20 Stoodley, P., K. Sauer, D.G. Davies, and J.W. Costerton. 2002. Biofilms as complex differentiated communities. Ann. Rev. Microbiol. 56, 187-209.   DOI   ScienceOn
21 Uhlich, G.A., J.E. Keen, and R.O. Elder. 2001. Mutations in the csgD promoter associated with variations in curli expression in certain strains of Escherichia coli O157:H7. Appl. Environ. Microbiol. 67, 2367-2370.   DOI   ScienceOn
22 van Houdt, R. and C.W. Michiels. 2005. Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res. Microbiol. 156, 626-633.   DOI   ScienceOn
23 Vinh, D.C. and J.M. Embil. 2005. Device-related infections: a review. J. Long Term Eff. Med. Implants 15, 467-488.   DOI   ScienceOn
24 Zelver, N., M. Hamilton, B. Pitts, D. Goeres, D. Walker, P. Sturman, and J. Heersink. 1999. Measuring antimicrobial effects on biofilm bacteria: from laboratory to field. Methods Enzymol. 310, 608-628.
25 Zogaj, X., W. Bokranz, M. Nimtz, and U. Romling. 2003. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect. Immunol. 71, 4151-4158.   DOI   ScienceOn
26 Zogaj, X., M. Nimtz, M. Rohde, W. Bokranz, and U. Romling. 2001. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 39, 1452-1463.   DOI   ScienceOn
27 Chapman, M.R., L.S. Robinson, J.S. Pinkner, R. Roth, J. Heuser, M. Hammar, S. Normark, and S.J. Hultgren. 2002. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295, 851-855.   DOI