• Title/Summary/Keyword: Gene Matching

Search Result 31, Processing Time 0.019 seconds

Cloud-based Full Homomorphic Encryption Algorithm by Gene Matching

  • Pingping Li;Feng Zhang
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.432-441
    • /
    • 2024
  • To improve the security of gene information and the accuracy of matching, this paper designs a homomorphic encryption algorithm for gene matching based on cloud computing environment. Firstly, the gene sequences of cloud files entered by users are collected, which are converted into binary code by binary function, so that the encrypted text is obviously different from the original text. After that, the binary code of genes in the database is compared with the generated code to complete gene matching. Experimental analysis indicates that when the number of fragments in a 1 GB gene file is 65, the minimum encryption time of the algorithm is 80.13 ms. Aside from that, the gene matching time and energy consumption of this algorithm are the least, which are 85.69 ms and 237.89 J, respectively.

A New Stereo Matching Using Compact Genetic Algorithm (소형 유전자 알고리즘을 이용한 새로운 스테레오 정합)

  • 한규필;배태면;권순규;하영호
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.474-478
    • /
    • 1999
  • Genetic algorithm is an efficient search method using principles of natural selection and population genetics. In conventional genetic algorithms, however, the size of gene pool should be increased to insure a convergency. Therefore, many memory spaces and much computation time were needed. Also, since child chromosomes were generated by chromosome crossover and gene mutation, the algorithms have a complex structure. Thus, in this paper, a compact stereo matching algorithm using a population-based incremental teaming based on probability vector is proposed to reduce these problems. The PBIL method is modified for matching environment. Since the Proposed algorithm uses a probability vector and eliminates gene pool, chromosome crossover, and gene mutation, the matching algorithm is simple and the computation load is considerably reduced. Even if the characteristics of images are changed, stable outputs are obtained without the modification of the matching algorithm.

  • PDF

Gene Sequences Clustering for the Prediction of Functional Domain (기능 도메인 예측을 위한 유전자 서열 클러스터링)

  • Han Sang-Il;Lee Sung-Gun;Hou Bo-Kyeng;Byun Yoon-Sup;Hwang Kyu-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1044-1049
    • /
    • 2006
  • Multiple sequence alignment is a method to compare two or more DNA or protein sequences. Most of multiple sequence alignment tools rely on pairwise alignment and Smith-Waterman algorithm to generate an alignment hierarchy. Therefore, in the existing multiple alignment method as the number of sequences increases, the runtime increases exponentially. In order to remedy this problem, we adopted a parallel processing suffix tree algorithm that is able to search for common subsequences at one time without pairwise alignment. Also, the cross-matching subsequences triggering inexact-matching among the searched common subsequences might be produced. So, the cross-matching masking process was suggested in this paper. To identify the function of the clusters generated by suffix tree clustering, BLAST and CDD (Conserved Domain Database)search were combined with a clustering tool. Our clustering and annotating tool consists of constructing suffix tree, overlapping common subsequences, clustering gene sequences and annotating gene clusters by BLAST and CDD search. The system was successfully evaluated with 36 gene sequences in the pentose phosphate pathway, clustering 10 clusters, finding out representative common subsequences, and finally identifying functional domains by searching CDD database.

A Compact Stereo Matching Algorithm Using Modified Population-Based Incremental Learning (변형된 개체기반 증가 학습을 이용한 소형 스테레오 정합 알고리즘)

  • Han, Kyu-Phil;Chung, Eui-Yoon;Min, Gak;Kim, Gi-Seok;Ha, Yeong-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.10
    • /
    • pp.103-112
    • /
    • 1999
  • Genetic algorithm, which uses principles of natural selection and population genetics, is an efficient method to find out an optimal solution. In conventional genetic algorithms, however, the size of gene pool needs to be increased to insure a convergency. Therefore, many memory spaces and much computation time were needed. Also, since child chromosomes were generated by chromosome crossover and gene mutation, the algorithms have a complex structure. Thus, in this paper, a compact stereo matching algorithm using a population-based incremental learning based on probability vector is proposed to reduce these problems. The PBIL method is modified for matching environment. Since th proposed algorithm uses a probability vector and eliminates gene pool, chromosome crossover, and gene mutation, the matching algorithm is simple and the computation load is considerably reduced. Even though the characteristics of images are changed, stable outputs are obtained without the modification of the matching algorithm.

  • PDF

A Study on Clustering and Identifying Gene Sequences using Suffix Tree Clustering Method and BLAST (서픽스트리 클러스터링 방법과 블라스트를 통합한 유전자 서열의 클러스터링과 기능검색에 관한 연구)

  • Han, Sang-Il;Lee, Sung-Gun;Kim, Kyung-Hoon;Lee, Ju-Yeong;Kim, Young-Han;Hwang, Kyu-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.10
    • /
    • pp.851-856
    • /
    • 2005
  • The DNA and protein data of diverse species have been daily discovered and deposited in the public archives according to each established format. Database systems in the public archives provide not only an easy-to-use, flexible interface to the public, but also in silico analysis tools of unidentified sequence data. Of such in silico analysis tools, multiple sequence alignment [1] methods relying on pairwise alignment and Smith-Waterman algorithm [2] enable us to identify unknown DNA, protein sequences or phylogenetic relation among several species. However, in the existing multiple alignment method as the number of sequences increases, the runtime increases exponentially. In order to remedy this problem, we adopted a parallel processing suffix tree algorithm that is able to search for common subsequences at one time without pairwise alignment. Also, the cross-matching subsequences triggering inexact-matching among the searched common subsequences might be produced. So, the cross-matching masking process was suggested in this paper. To identify the function of the clusters generated by suffix tree clustering, BLAST was combined with a clustering tool. Our clustering and annotating tool is summarized as the following steps: (1) construction of suffix tree; (2) masking of cross-matching pairs; (3) clustering of gene sequences and (4) annotating gene clusters by BLAST search. The system was successfully evaluated with 22 gene sequences in the pyrubate pathway of bacteria, clustering 7 clusters and finding out representative common subsequences of each cluster

The partial matching method for effective recognizing HLA entities (효과적인 HLA개체인식을 위한 부분매칭기법)

  • Chae, Jeong-Min;Jung, Young-Hee;Lee, Tae-Min;Chae, Ji-Eun;Oh, Heung-Bum;Jung, Soon-Young
    • The Journal of Korean Association of Computer Education
    • /
    • v.14 no.2
    • /
    • pp.83-94
    • /
    • 2011
  • In the biomedical domain, the longest matching method is frequently used for recognizing named entity written in the literature. This method uses a dictionary as a resource for named entity recognition. If there exist appropriated dictionary about target domain, the longest matching method has the advantage of being able to recognize the entities of target domain quickly and exactly. However, the longest matching method is difficult to recognize the enumerated named entities, because these entities are frequently expressed as being omitted some words. In order to resolve this problem, we propose the partial matching method using a dictionary. The proposed method makes several candidate entities on the assumption that the ellipses may be included. After that, the method selects the most valid one among candidate entities through the optimization algorithm. We tested the longest and partial matching method about HLA entities: HLA gene, antigen, and allele entities, which are frequently enumerated among biomedical entities. As preparing for named entity recognition, we built two new resource, extended dictionary and tag-based dictionary about HLA entities. And later, we performed the longest and partial matching method using each dictionary. According to our experiment result, the longest matching method was effective in recognizing HLA antigen entities, in which the ellipses are rare, and the partial matching method was effective in recognizing HLA gene and allele entities, in which the ellipses are frequent. Especially, the partial matching method had a high F-score 95.59% about HLA alleles.

  • PDF

A Simple Stereo Matching Algorithm using PBIL and its Alternative (PBIL을 이용한 소형 스테레오 정합 및 대안 알고리즘)

  • Han Kyu-Phil
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.429-436
    • /
    • 2005
  • A simple stereo matching algorithm using population-based incremental learning(PBIL) is proposed in this paper to decrease the general problem of genetic algorithms, such as memory consumption and inefficiency of search. PBIL is a variation of genetic algorithms using stochastic search and competitive teaming based on a probability vector. The structure of PBIL is simpler than that of other genetic algorithm families, such as serial and parallel ones, due to the use of a probability vector. The PBIL strategy is simplified and adapted for stereo matching circumstances. Thus, gene pool, chromosome crossover, and gene mutation we removed, while the evolution rule, that fitter chromosomes should have higher survival probabilities, is preserved. As a result, memory space is decreased, matching rules are simplified and computation cost is reduced. In addition, a scheme controlling the distance of neighbors for disparity smoothness is inserted to obtain a wide-area consistency of disparities, like a result of coarse-to-fine matchers. Because of this scheme, the proposed algorithm can produce a stable disparity map with a small fixed-size window. Finally, an alterative version of the proposed algorithm without using probability vector is also presented for simpler set-ups.

Epidemiological Investigation of Staphylococcus aureus Isolated from Bovine Mastitis Based on the Polymorphism of Coagulase Gene (젖소 유방염 유래 Staphylococcus aureus의 Coagulase Gene 유전형 분석에 의한 감염경로 규명)

  • Moon, Jin-San;Lee, Ae-Ri;Lym, Suk-Kyung;Joo, Yi-Seok;Kang, Hyun-Mi;Kim, Jong-Man;Kim, Mal-Nam
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.1
    • /
    • pp.95-102
    • /
    • 2003
  • Because Staphylococcus aureus (S. aureus) has variable number of short sequence repeat region in coagulase gene, it has been used to investigate the relatedness of S. aureus isolates. In this study, we isolated S. aureus strains from 20 dairy farms with bovine mastitis from September 2000 to August 2001. PCR-RFLP analysis of coagulase gene revealed 10 different patterns. Most of the S. aureus isolates showed only one coagulase gene RFLP pattern per farm. However, there were several S. aureus clones spreading between dairy farms. All the farms showed poor management conditions of milking machine and milker, indicating that managements for mastitis control program include use of proper milking matching, premilking sanitation, and segregation in the S. aureus infection herd. Our data suggest that PCR-RFLP analysis of coagulase gene might be applicable for the epidemiological investigations of S. aureus isolated from bovine mastitis cows.

Bioinformatics Approach to Direct Target Prediction for RNAi Function and Non-specific Cosuppression in Caenorhabditis elegans (생물정보학적 접근을 통한 Caenorhabditis elegans 모델시스템의 생체내 RNAi 기능예측 및 비특이적 공동발현억제 현상 분석)

  • Kim, Tae-Ho;Kim, Eui-Yong;Joo, Hyun
    • KSBB Journal
    • /
    • v.26 no.2
    • /
    • pp.131-138
    • /
    • 2011
  • Some computational approaches are needed for clarifying RNAi sequences, because it takes much time and endeavor that almost of RNAi sequences are verified by experimental data. Incorrectness of RNAi mechanism and other unaware factors in organism system are frequently faced with questions regarding potential use of RNAi as therapeutic applications. Our massive parallelized pair alignment scoring between dsRNA in Genebank and expressed sequence tags (ESTs) in Caenorhabditis elegans Genome Sequencing Projects revealed that this provides a useful tool for the prediction of RNAi induced cosuppression details for practical use. This pair alignment scoring method using high performance computing exhibited some possibility that numerous unwanted gene silencing and cosuppression exist even at high matching scores each other. The classifying the relative higher matching score of them based on GO (Gene Ontology) system could present mapping dsRNA of C. elegans and functional roles in an applied system. Our prediction also exhibited that more than 78% of the predicted co-suppressible genes are located in the ribosomal spot of C. elegans.

Construction of Recombinant Lactobacillus casei Strains Using Splicing by Overlap Extension

  • Jeong, Do-Won;Lee, Jong-Hoon;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1953-1957
    • /
    • 2008
  • Recombinant Lactobacillus strains have been constructed using gene splicing by overlap extension (SOE). Primers were designed of which one end of an amplified product contained complementary sequences for an end of other amplified fragment. For efficient matching, we used an asymmetric PCR step that was effective at generating an excess of strands that would anneal in the final PCR. CP12, a recombinant fragment consisting of the integrase gene and attachment site of the bacteriophage A2, was constructed and inserted into the genome of Lactobacillus casei ATCC 393, yielding Lb. casei ATCC 393::XCP12. Another recombinant Lb. casei strain was constructed, where the egfp gene was a part of the construction. The EGFP produced from Lb. casei ATCC 393::XCEGFP14 was detected by Western blot hybridization. This simple and widely applicable approach has significant advantages over standard recombinant DNA techniques for Lactobacillus species.