• Title/Summary/Keyword: Gene Identification

Search Result 1,726, Processing Time 0.028 seconds

Identification of Radiation-Sensitive Gene in U937 Cell by using cDNA-Chip Composed of Human Cancer Related Gene (U937 세포에서 발암관련 유전자들로 구성된 DNA chip을 이용한 방사선 감수성 유전자들의 선발)

  • 김종수;김인규;강경선;윤병수
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.1
    • /
    • pp.54-59
    • /
    • 2002
  • We have used cDNA microarray hybridization to identify gene regulated in response to gamma-irradiation in U-937 cell. The cDNA-chip was composed entirely of 1,000 human cancer related gene including apoptosis and angiogenesis etc. In gamma-irradiated U-937 cell, highly charged protein, ribosomal protein L32, four and a half LIM domains 3, lipocalin 2 (oncogene 24p3) and interleukin 15, ataxia telangiectasia mutated (includes complementation groups A, C and D) genes showed increased level of its transcription, and cell division cycle 25A, dihydrofolate reductase, topoisomerase (DNA) II beta(180kD), kinase suppressor of ras and strarigin genes showed reduced level of its transcription compared to untreated U-937 cell. The significant change of level of transcription was not found in well-known ionizing radiation(IR)-responsive gene, such as transcription factor TP53 and p53 related gene, except ataxia telangiectasia mutated gene.

  • PDF

Identification of eleven species of the Pleuronectidae family using DNA-based techniques

  • Eun-Mi Kim;Mi Nan Lee;Chun-Mae Dong;Eun Soo Noh;Young-Ok Kim
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.11
    • /
    • pp.678-688
    • /
    • 2023
  • Flatfish are one of the largest families in the order Pleuronectiformes and are economically important edible marine fish species. However, they have similar morphological characteristics leading to challenges in classifying correctly, which may result in mislabeling and illegal sales, such as fraudulent labeling of processed food. Therefore, accurate identification is important to ensure the quality and safety of domestic markets in Korea. Species-specific primers were prepared from the mainly consumed eleven species of the order Pleuronectiformes. To rapidly identify the 11 flatfish species, a highly efficient, rapid, multiplex polymerase chain reaction (PCR) with species-specific primers was developed. Species-specific primer sets were designed for the mitochondrial DNA cytochrome c oxidase subunit I gene. Species-specific multiplex PCR (MSS-PCR) either specifically amplified a PCR product of a unique size or failed. This MSS-PCR analysis is easy to perform and yields reliable results in less time than the previous Sanger sequencing methods. This technique could be a powerful tool for the identification of the 11 species b the family Pleuronectidae and can contribute to the prevention of falsified labeling and protection of consumer rights.

Novel Diagnostic Algorithm Using tuf Gene Amplification and Restriction Fragment Length Polymorphism is Promising Tool for Identification of Nontuberculous Mycobacteria

  • Shin, Ji-Hyun;Cho, Eun-Jin;Lee, Jung-Yeon;Yu, Jae-Yon;Kang, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.323-330
    • /
    • 2009
  • Nontuberculous mycobacteria (NTM) are a major cause of opportunistic infections in immunocompromised patients, making the reliable and rapid identification of NTM to the species level very important for the treatment of such patients. Therefore, this study evaluated the usefulness of the novel target genes tuf and tmRNA for the identification of NTM to the species level, using a PCRrestriction fragment length polymorphism analysis (PRA). A total of 44 reference strains and 17 clinical isolates of the genus Mycobacterium were used. The 741 bp or 744 bp tuf genes were amplified, restricted with two restriction enzymes (HaeIII/MboI), and sequenced. The tuf gene-PRA patterns were compared with those for the tmRNA (AvaII), hsp65 (HaeIII/HphI), rpoB (MspI/HaeIII), and 16S rRNA (HaeIII) genes. For the reference strains, the tuf gene-PRA yielded 43 HaeIII patterns, of which 35 (81.4%) showed unique patterns on the species level, whereas the tmRNA, hsp65, rpoB, and 16S rRNA-PRAs only showed 10 (23.3%), 32 (74.4%), 19 (44.2%), and 3 (7%) unique patterns after single digestion, respectively. The tuf gene-PRA produced a clear distinction between closely related NTM species, such as M. abscessus (557-84-58) and M. chelonae (477-84-80-58), and M. kansasii (141-136-80-63-58-54-51) and M. gastri (141-136-117-80-58-51). No difference was observed between the tuf-PRA patterns for the reference strains and clinical isolates. Thus, a diagnostic algorithm using a tuf gene-targeting PRA is a promising tool with more advantages than the previously used hsp65, rpoB, and 16S rRNA genes for the identification of NTM to the species level.

Genome Sequencing and Genome-Wide Identification of Carbohydrate-Active Enzymes (CAZymes) in the White Rot Fungus Flammulina fennae

  • Lee, Chang-Soo;Kong, Won-Sik;Park, Young-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.300-312
    • /
    • 2018
  • Whole-genome sequencing of the wood-rotting fungus, Flammulina fennae, was carried out to identify carbohydrate-active enzymes (CAZymes). De novo genome assembly (31 kmer) of short reads by next-generation sequencing revealed a total genome length of 32,423,623 base pairs (39% GC). A total of 11,591 gene models in the assembled genome sequence of F. fennae were predicted by ab initio gene prediction using the AUGUSTUS tool. In a genome-wide comparison, 6,715 orthologous groups shared at least one gene with F. fennae and 10,667 (92%) of 11,591 genes for F. fennae proteins had orthologs among the Dikarya. Additionally, F. fennae contained 23 species-specific genes, of which 16 were paralogous. CAZyme identification and annotation revealed 513 CAZymes, including 82 auxiliary activities, 220 glycoside hydrolases, 85 glycosyltransferases, 20 polysaccharide lyases, 57 carbohydrate esterases, and 45 carbohydrate binding-modules in the F. fennae genome. The genome information of F. fennae increases the understanding of this basidiomycete fungus. CAZyme gene information will be useful for detailed studies of lignocellulosic biomass degradation for biotechnological and industrial applications.

DNAchip as a Tool for Clinical Diagnostics (진단의학 도구로서의 DNA칩)

  • 김철민;박희경
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.97-100
    • /
    • 2004
  • The identification of the DNA structure as a double-stranded helix consting of two nucleotide chain molecules was a milestone in modern molecular biology. The DNA chip technology is based on reverse hybridization that follows the principle of complementary binding of double-stranded DNA. DNA chip can be described as the deposition of defined nucleic acid sequences, probes, on a solid substrate to form a regular array of elements that are available for hybridization to complementary nucleic acids, targets. DNA chips based on cDNA clons, oligonucleotides and genomic clons have been developed for gene expression studies, genetic variation analysis and genomic changes associated with disease including cancers and genetic diseases. DNA chips for gene expression profiling can be used for functional analysis in human eel Is and animal models, disease-related gene studies, assessment of gene therapy, assessment of genetically modified food, and research for drug discovery. DNA chips for genetic variation detection can be used for the detection of mutations or chromosomal abnormalities in cnacers, drug resistances in cancer cells or pathogenic microbes, histocompatibility analysis for transplantation, individual identification for forensic medicine, and detection and discrimination of pathogenic microbes. The DNA chip will be generalized as a useful tool in clinical diagnostics in near future. Lab-on-a chip and informatics will facilitate the development of a variety of DNA chips for diagnostic purpose.

  • PDF

Studies on blood types for the reproduction of racing horses 1. Analysis of serum albumin type (경주마(競走馬) 생산(生産)을 위한 혈액형(血液型) 연구(硏究) I. 혈청(血淸) Albumin형(型)에 대(對)하여)

  • Lim, Young-jae;Eom, Young-ho
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.4
    • /
    • pp.457-460
    • /
    • 1989
  • This work was carried out to get some informations about blood types and their researches, involved blood stock and genetic identification. Horses examined were total 55 heads of sire, mare and their progeny in Korean Horse Affairs Association. 1. Albumin phenotypes of 26 mare were examined. The appearance of phenotype AA, BB, AB, was 1, 18, 7 respectively. The gene frequency of albumin A was 0.17 and albumin B was 0.76. 2. The appearance of phenotype AA, BB, AB in 29 progeny was 1, 16, 12 respectively. The gene frequency of albumin A was 0.24 and albumin B was 0.76. The gene frequency of gene A was higher than their parents. 3. Identification of the relationship between parents and their progeny was also examined. 4 of type AB between AA & BB, 4 of type BB between BB & BB, 13 of type AB between BB & AB were borned. In third case, all of progeny was type AB. This results suggest positive relationship between them.

  • PDF

Identification of B52-dependent Gene Expression Signature and Alternative Splicing Using a D. melanogaster B52-null Mutant

  • Hong, Sun-Woo;Jung, Mi-Sun;Kim, Eun-Kyung;Lee, Dong-Ki;Kim, So-Youn
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.323-326
    • /
    • 2009
  • SR proteins are essential splicing regulators and also modulate alternative splicing events, which function both as redundant and substrate-specific manner. The Drosophila B52/SRp55, a member of the SR protein family, is essential for the fly development in vivo, as deletion of B52 gene results in lethality of animals at the second instar larval stage. Identification of the splicing target genes of B52 thus should be crucial for the understanding of the specific developmental role of B52 in vivo. In this study, we performed whole-genome DNA microarray experiments with a B52- knock-out animal. Analysis of the microarray data not only provided the B52-dependent gene expression signature, but also revealed a larval-stage specific, alternative splicing target gene of B52. Our result thus provides a starting point to understand the essential function of B52 at the organismal level.

Identification of Hanwoo and Holstein meat using MGB probe based real-time PCR associated with single nucleotide polymorphism (SNP) in Melanocortin 1 receptor (MC1R) gene (소 모색관련 MC1R 유전자의 SNP와 관련한 MGB probe에 기초한 real-time PCR을 이용한 한우육과 Holstein육의 판별)

  • Park, Sung-Do;Kim, Tae-Jung;Lee, Jae-Il
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.1
    • /
    • pp.25-28
    • /
    • 2005
  • The melanocortin 1 receptor (MC1R) plays an important role in regulation of melanin pigment synthesis within mammalian melanocytes. Mutations within the gene encoding MC1R have been shown to explain coat color variations within several mammalian species including cattle. To develope a rapid and accurate method for the identification of Hanwoo meat, we performed a single nucleotide polymorphism (SNP) analysis in Melanocortin 1 receptor (MC1R) gene using TaqMan$^{(R)}$ MGB probe-based real-time PCR. Two specific probes (one for Hanwoo and the other for Holstein and Black angus) were designed. At the 5' end of 2 TaqMan$^{(R)}$ MGB probes, 6-carboxyfluorescein (FAM) was labeled for Hanwoo, and VIC for Holstein and Black angus. As a result, Hanwoo samples showed FAM-positive signal only, whereas other samples showed VIC-positive. This result suggests that the TaqMan$^{(R)}$ MGB probe based real-time PCR technique would be very accurate, easy and reproducible method to discriminate between Hanwoo meat and Holstein/Black angus meat.

Identification of Combined Biomarker for Predicting Alzheimer's Disease Using Machine Learning

  • Ki-Yeol Kim
    • Korean Journal of Biological Psychiatry
    • /
    • v.30 no.1
    • /
    • pp.24-30
    • /
    • 2023
  • Objectives Alzheimer's disease (AD) is the most common form of dementia in older adults, damaging the brain and resulting in impaired memory, thinking, and behavior. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. The aim of our study was to identify differentially expressed genes associated with AD and combined biomarkers among them to improve AD risk prediction accuracy. Methods Machine learning methods were used to compare the performance of the identified combined biomarkers. In this study, three publicly available gene expression datasets from the hippocampal brain region were used. Results We detected 31 significant common genes from two different microarray datasets using the limma package. Some of them belonged to 11 biological pathways. Combined biomarkers were identified in two microarray datasets and were evaluated in a different dataset. The performance of the predictive models using the combined biomarkers was superior to those of models using a single gene. When two genes were combined, the most predictive gene set in the evaluation dataset was ATR and PRKCB when linear discriminant analysis was applied. Conclusions Combined biomarkers showed good performance in predicting the risk of AD. The constructed predictive nomogram using combined biomarkers could easily be used by clinicians to identify high-risk individuals so that more efficient trials could be designed to reduce the incidence of AD.

First report of freshwater red alga Compsopogon caeruleus (Compsopogonaceae, Rhodophyta) in Korea

  • Eun-Young Lee;Soon Jeong Lee;Sang-Rae Lee
    • Journal of Species Research
    • /
    • v.13 no.3
    • /
    • pp.332-339
    • /
    • 2024
  • The filamentous freshwater red alga Compsopogon caeruleus(Compsopogonophyceae, Compsopogonaceae, Rhodophyta) occurs in tropical and subtropical regions of worldwide. This species has been reported from Asia, America, Africa, Europe and Oceania, and the worldwide distribution of Compsopogon caeruleus is in variable water habitats. Several morphospecies of the genus Compsopogon had been recorded, but recent molecular phylogenetic analyses with worldwide sampling identified a monospecific genus, C. caeruleus. In the present study, we first report a freshwater red alga Compsopogon caeruleus from Korea. We identified Compsopogon caeruleus in an urban river in Yongin City, and analyzed its morphological and genetic characteristics. Nuclear 18S rDNA, plastidal rbcL gene and mitochondrial cox1 gene sequences isolated from Korean Compsopogon caeruleus showed high sequences similarity with Compsopogon caeruleus from worldwide (98.6-100% (18S rDNA), 99-100% (rbcL) and 97.7-100% (cox1)). These sequences similarities support the identification of a red alga found in Korea as Compsopogon caeruleus. This new geographical report provides the useful information for understanding the distribution and habitat range of Compsopogon caeruleus especially concerning urban freshwater environments.