Kim, Se-Mi;Park, Sun-Ae;Cho, Hea-Young;Lee, Yong-Bok
Journal of Pharmaceutical Investigation
/
v.38
no.6
/
pp.365-372
/
2008
The aim of this study was to investigate the frequency of the SNPs on MDR1 exon 12, 21 and 26 in Korean population and to analyze haplotype frequency on MDR1 exon 12, 21 and 26 in Korean population. A total of 426 healthy subjects was genotyped for MDR1, using polymerase chain reaction-based diagnostic tests. Haplotype was statistically inferred using an algorithm based on the expectation-maximization (EM). MDR1 C1236T genotyping revealed that the frequency for homozygous wild-type (C/C), heterozygous (C/T) and for homozygous mutant-type (T/T) was 20.19%, 46.48% and 33.33%, respectively. MDR1 G2677T/A genotyping revealed that the frequency for homozygous G/G, heterozygous G/T, homozygous T/T, heterozygous G/A, heterozygous T/A and for homozygous A/A type was 30.75%, 42.26%, 9.86%, 7.51 %, 7.04% and 2.58%, respectively. MDR1 C3435T genotyping revealed that the frequency for homozygous wild-type (C/C), heterozygous (C/T) and for homozygous mutant-type (T/T) was 38.73%, 50.24% and 11.03%, respectively. Twelve haplotypes were observed. Of the three major haplotypes identified (CGC, TTT and TGC), the CGC haplotype were mainly predominant in the Korean populations and accounted for 29.96% of total haplotype in Korean.
Cancers of the lung and liver are the top 10 leading causes of cancer death worldwide. Thus, it is essential to identify the genes specifically expressed in these two cancer types to develop new therapeutics. Although many messenger RNA (mRNA) sequencing data related to these cancer cells are available due to the advancement of next-generation sequencing (NGS) technologies, optimized data processing methods need to be developed to identify the novel cancer-specific genes. Here, we conducted an analytical comparison between Bowtie2, a Burrows-Wheeler transform-based alignment tool, and Kallisto, which adopts pseudo alignment based on a transcriptome de Bruijn graph using mRNA sequencing data on normal cells and lung/liver cancer tissues. Before using cancer data, simulated mRNA sequencing reads were generated, and the high Transcripts Per Million (TPM) values were compared. mRNA sequencing reads data on lung/liver cancer cells were also extracted and quantified. While Kallisto could directly give the output in TPM values, Bowtie2 provided the counts. Thus, TPM values were calculated by processing the Sequence Alignment Map (SAM) file in R using package Rsubread and subsequently in python. The analysis of the simulated sequencing data revealed that Kallisto could detect more transcripts and had a higher overlap over Bowtie2. The evaluation of these two data processing methods using the known lung cancer biomarkers concludes that in standard settings without any dedicated quality control, Kallisto is more effective at producing faster and more accurate results than Bowtie2. Such conclusions were also drawn and confirmed with the known biomarkers specific to liver cancer.
In the era of the fourth industrial revolution technology, the inclusion of personalized nutrition for healthcare (PNH), when establishing a healthcare platform to prevent chronic diseases such as obesity, diabetes, cerebrovascular and cardiovascular disease, pulmonary disease, and inflammatory diseases, enhances the national competitiveness of global healthcare markets. Furthermore, since the government experienced COVID-19 and the population dead cross in 2020, as well as numerous health problems due to an increasing super-aged Korean society, there is an urgent need to secure, develop, and utilize PNH-related technologies. Three conditions are essential for the development of PNH technologies. These include the establishment of causality between obesity genome (genotype) and prevalence (phenotype) in Koreans, validation of clinical intervention research, and securing PNH-utilization technology (i.e., algorithm development, artificial intelligence-based platform, direct-to-customer [DTC]-based PNH, etc.). Therefore, a national control tower is required to establish appropriate PNH infrastructure (basic and clinical research, cultivation of PNH-related experts, etc.). The post-corona era will be aggressive in sharing data knowledge and developing related technologies, and Korea needs to actively participate in the large-scale global healthcare markets. This review provides the importance of scientific evidence based on a huge dataset, which is the primary prerequisite for the DTC obesity gene-based PNH technologies to be competitive in the healthcare market. Furthermore, based on comparing domestic and internationally approved DTC obese genes and the current status of Korean obesity genome-based PNH research, we intend to provide a direction to PNH planners (individuals and industries) for establishing scientific PNH guidelines for the prevention of obesity.
The archaeal clusters of orthologous genes (arCOG) algorithm, which identifies common genes among archaebacterial genomes, was used to identify conservative genes among 168 archaebacterial strains. The numbers of conserved orthologs were 14, 10, 9, and 8 arCOGs in 168, 167, 166, and 165 strains, respectively. Among 41 conserved arCOGs, 13 were related to function J (translation, ribosomal structure, and biogenesis), and 10 were related to function L (replication, recombination, and repair). Among the 14 conserved arCOGs in all 168 strains, 6 arCOGs of tRNA synthetase comprised the highest proportion. Of the remaining 8 arCOGs, 2 are involved in reactions with ribosomes, 2 for tRNA synthesis, 2 for DNA replication, and 2 for transcription. These results showed the importance of protein expression in archaea. For the classes or orders having 3 or more members, genomic analysis was performed by averaging the distance values of the conservative arCOGs. Classes Archaeoglobi and Thermoplasmata of the phylum Euryarchaeota showed the lowest and the highest average of distance value, respectively. This study can provides data necessary for basic scientific research and the development of antibacterial agents and tumor control.
Sixty-five molds isolated from clinical specimens were included in this study. All the isolates were molds that could be identified morphologically, strains that are difficult to identify because of morphological similarities, and strains that require species-level identification. PCR and direct sequencing were performed to target the internal transcribed spacer (ITS) region, the D1/D2 region, and the β-tubulin gene. Comparative sequence analysis using the GenBank database was performed using the basic local alignment search tool (BLAST) algorithm. The fungi identified morphologically to the genus level were 67%. Sequencing analysis was performed on 62 genera and species level of the 65 strains. Discrepancies were 14 (21.5%) of the 65 strains between the results of phenotypic and molecular identification. B. dermatitidis, T. marneffei, and G. argillacea were identified for the first time in Korea using the DNA sequencing method. Morphological identification is a very useful method in terms of the reporting time and costs in cases of frequently isolated and rapid growth, such as Aspergillus. When molecular methods are employed, the cost and clinical significance should be considered. On the other hand, the molecular identification of molds can provide fast and accurate results.
Background: Triple-negative breast cancer (TNBC), characterized by the lack of expression of estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2, is typically associated with a poor prognosis. The majority of TNBCs show the expression of basal markers on gene expression profiling and most authors accept TNBC as basal-like (BL) breast cancer. However, a smaller fraction lacks a BL phenotype despite being TNBC. The literature is silent on non-basal-like (NBL) type of TNBC. The present study was aimed at defining behavioral differences between BL and NBL phenotypes. Objectives: i) Identify the TNBCs and categorize them into BL and NBL breast cancer. ii) Examine the behavioral differences between two subtypes. iii) Observe the pattern of treatment failure among TNBCs. Materials and Methods: All TNBC cases during January 2009-December 2010 were retrieved. The subjects fitting the inclusion criteria of study were differentiated into BL and NBL phenotypes using surrogate immunohistochemistry with three basal markers $34{\beta}E12$, c-Kit and EGFR as per the algorithm defined by Nielsen et al. The detailed data of subjects were collated from clinical records. The comparison of clinicopathological features between two subgroups was done using statistical analyses. The pattern of treatment failure along with its association with prognostic factors was assessed. Results: TNBC constituted 18% of breast cancer cases considered in the study. The BL and NBL subtypes accounted for 81% and 19% respectively of the TNBC group. No statistically significant association was seen between prognostic parameters and two phenotypes. Among patients with treatment failure, 19% were with BL and 15% were with NBL phenotype. The mean disease free survival (DFS) in groups BL and NBL was 30.0 and 37.9 months respectively, while mean overall survival (OS) was 31.93 and 38.5 months respectively. Treatment failure was significantly associated with stage (p=.023) among prognostic factors. Conclusions: Disease stage at presentation is an important prognostic factor influencing the treatment failure and survival among TNBCs. Increasing tumor size is related to lymph node positivity. BL tumors have a more aggressive clinical course than that of NBL as shown by shorter DFS and OS, despite having no statistically significant difference between prognostic parameters. New therapeutic alternatives should be explored for patients with this subtype of breast cancer.
Moon, Junghoon;Jang, Ikhoon;Choe, Young Chan;Kim, Jin Gyo;Bock, Gene
The Journal of Korean Institute of Communications and Information Sciences
/
v.40
no.5
/
pp.903-913
/
2015
The Korea Agency of Education, Promotion and Information Service in Food, Agriculture, Forestry and Fisheries launched a public data portal service in January 2015. The service provides customized information for consumers through an agri-food recommendation system built-in portal service. The recommendation system has fallowing characteristics. First, the system can increase recommendation accuracy by using a wide variety of agri-food related data, including SNS opinion mining, consumer's purchase data, climate data, and wholesale price data. Second, the system uses segmentation method based on consumer's lifestyle and megatrends factors to overcome the cold start problem. Third, the system recommends agri-foods to users reflecting various preference contextual factors by using recommendation algorithm, dirichlet-multinomial distribution. In addition, the system provides diverse information related to recommended agri-foods to increase interest in agri-food of service users.
Objective: Copy number variations (CNVs) are a major source of genetic diversity complementary to single nucleotide polymorphism (SNP) in animals. The aim of the study was to perform a comprehensive genomic analysis of CNVs based on high density whole-genome SNP markers in Chinese Dongxiang spotted pigs. Methods: We used customized Affymetrix Axiom Pig1.4M array plates containing 1.4 million SNPs and the PennCNV algorithm to identify porcine CNVs on autosomes in Chinese Dongxiang spotted pigs. Then, the next generation sequence data was used to confirm the detected CNVs. Next, functional analysis was performed for gene contents in copy number variation regions (CNVRs). In addition, we compared the identified CNVRs with those reported ones and quantitative trait loci (QTL) in the pig QTL database. Results: We identified 871 putative CNVs belonging to 2,221 CNVRs on 17 autosomes. We further discarded CNVRs that were detected only in one individual, leaving us 166 CNVRs in total. The 166 CNVRs ranged from 2.89 kb to 617.53 kb with a mean value of 93.65 kb and a genome coverage of 15.55 Mb, corresponding to 0.58% of the pig genome. A total of 119 (71.69%) of the identified CNVRs were confirmed by next generation sequence data. Moreover, functional annotation showed that these CNVRs are involved in a variety of molecular functions. More than half (56.63%) of the CNVRs (n = 94) have been reported in previous studies, while 72 CNVRs are reported for the first time. In addition, 162 (97.59%) CNVRs were found to overlap with 2,765 previously reported QTLs affecting 378 phenotypic traits. Conclusion: The findings improve the catalog of pig CNVs and provide insights and novel molecular markers for further genetic analyses of Chinese indigenous pigs.
Journal of Korea Society of Industrial Information Systems
/
v.25
no.6
/
pp.33-45
/
2020
This paper aims to look at the perspective that the latest cutting-edge technologies are predicting individual diseases in the actual medical environment in a situation where various types of wearable devices are rapidly increasing and used in the healthcare domain. Through the process of collecting, processing, and transmitting data by merging clinical data, genetic data, and life log data through a user-participating wearable device, it presents the process of connecting the learning model and the feedback model in the environment of the Deep Neural Network. In the case of the actual field that has undergone clinical trial procedures of medical IT occurring in such a high-tech medical field, the effect of a specific gene caused by metabolic syndrome on the disease is measured, and clinical information and life log data are merged to process different heterogeneous data. That is, it proves the objective suitability and certainty of the deep neural network of heterogeneous data, and through this, the performance evaluation according to the noise in the actual deep learning environment is performed. In the case of the automatic encoder, we proved that the accuracy and predicted value varying per 1,000 EPOCH are linearly changed several times with the increasing value of the variable.
As a result of applying the COG (Cluster of Orthologous Groups of Protein) algorithm to 1,309 species to confirm the conserved genes of prokaryotes, ribosomal protein S11 (COG0100) was identified. The numbers of conservative genes were 2, 5, 5, and 6 in 1,308, 1,307, 1,306, and 1,305 species, respectively. Twenty-nine genes were conserved in over 1,302 species, and they encoded 23 ribosomal proteins, 3 tRNA synthetases, 2 translation factors, and 1 RNA polymerase subunit. Most of them were related to protein production, suggesting the importance of protein expression in prokaryotes. The highest conservative COG was COG0048 (ribosomal protein S12) among the 29 COGs. The 29 conserved genes usually have one protein for each prokaryote. COG0090 (ribosomal protein L2) had not only the lowest conservation value but also the largest standard deviation of phylogenetic distance value. As COG0090 is not only a member of the ribosome, but also a regulator of replication and transcription, it could be inferred that prokaryotes have large variations in COG0090 to survive in various environments. This study could provide data necessary for basic science, tumor control, and development of antibacterial agents.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.