• Title/Summary/Keyword: Gel structure

Search Result 1,167, Processing Time 0.033 seconds

Helical Periodicity of $(dT)_n{\cdot}(dA)_n{\cdot}(dT)_n$ Triple - Stranded DNA

  • Kim, Ki-Hyun;Koo, Hyeon-Sook
    • BMB Reports
    • /
    • v.30 no.6
    • /
    • pp.426-430
    • /
    • 1997
  • The helical periodicity of the triple-stranded $(dT)_n{\cdot}(dA)_n{\cdot}(dT)_n$ sequence was determined by measuring gel-mobilities of bent DNA fragments containing the sequence. In the bent DNA fragments, a $GA_{22}G$ $CT_{22}C$ sequence was located between two bent DNA loci composed of six $A_{6}{\cdot}T_{6}$ repeats. and the DNA length between the bent DNA loci was varied by 1 base pair over a full helical turn. The gel mobility of each bent DNA fragment reflected the overall extent of DNA bending and varied with the DNA length between the two bent loci. Mobilities of the bent DNA fragments in 5% polyacrylamide gel were measured after preincubating the DNA fragments both in the presence and absence of $CT_{22}C$ oligonucleotide. By comparing the bent DNA fragments containing an intermolecular triplex structure with those of a genuine duplex structure in the gel mobilities, the helical periodicity of the $T_n{\cdot}A_n{\cdot}T_n$ triplex DNA was determined to be $11.5({\pm}0.3)bp/turn$.

  • PDF

Latex Particles's Behavior in Chemically Cross-Linked Gels (화학겔 안에서의 라텍스 입자의 거동에 관한 연구)

  • Jang, Kyung Ho;Sohn, Dae Won
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.2
    • /
    • pp.156-160
    • /
    • 1998
  • Probe diffusion with latex particles in two different types of chemically cross linked gel has been studied. The diffusion of particles in silica gel is decreased by decreasing the gel correlation length but the particles' diffusion in the acrylamide gel still shows the heterogeneity of the gel. By increasing the contents of the gel network the silica gel makes a more homogeneous and compact structure than that of acrylamide gel which has partial heterodyning. Dynamic light scattering study with the probe particles in two different gels reveals the heterogeneity of the gel network. The latex particles trapping in the gel has been investigated by using non-ergodic concepts.

  • PDF

Phase Behavior Study of Fatty Acid Potassium Cream Soaps (지방산 칼륨 Cream Soaps 의 상거동 연구)

  • Noh, Min Joo;Yeo, Hye Lim;Lee, Ji Hyun;Park, Myeong Sam;Lee, Jun Bae;Yoon, Moung Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.1
    • /
    • pp.55-64
    • /
    • 2022
  • The potassium cream soap with fatty acid called cleaning foam has a crystal gel structure, and unlike an emulsion system, it is weak to shear stress and shows characteristics that are easily separated under high temperature storage conditions. The crystal gel structure of cleansing foams is significantly influenced by the nature and proportion of fatty acids, degree of neutralization, and the nature and proportion of polyols. In order to investigate the effect of these parameters on the crystal gel structure, a ternary system consisting of water/KOH/fatty acid was investigated in this study. The investigation of differential scanning calorimeter (DSC) revealed that the eutectic point was found at the ratio of myristic acid (MA) : stearic acid (SA) = 3 : 1 and ternary systems were the most stable at the eutectic point. However, the increase in fatty acid content had little effect on stability. On the basis of viscosity and polarized optical microscopy (POM) measurements, the optimum degree of neutralization was found to be about 75%. The system was stable when the melting point (Tm) of the ternary system was higher than the storage temperature and the crystal phase was transferred to lamellar gel phase, but the increase in fatty acid content had little effect on stability. The addition of polyols to the ternary system played an important role in changing the Tm and causing phase transition. The structure of the cleansing foams were confirmed through cryogenic scanning electron microscope (Cryo-SEM), small and wide angle X-ray scattering (SAXS and WAXS) analysis. Since butylene glycol (BG), propylene glycol (PG), and dipropylene glycol (DPG) lowered the Tm and hindered the lamellar gel formation, they were unsuitable for the formation of stable cleansing foam. In contrast, glycerin, PEG-400, and sorbitol increased the Tm, and facilitated the formation of lamellar gel phase, which led to a stable ternary system. Glycerin was found to be the most optimal agent to prepare a cleansing foam with enhanced stability.

Characteristics of Ti-Sn Sol fabricated using Sol-Gel Method (솔-젤법에 의해 제작된 Ti-Sn 솔의 특성)

  • You, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.91-93
    • /
    • 2002
  • Ti-Sn sol is fabricated using sol-gel method. In case the amount of water required hydrolysis smaller than that for stoichiometry, Ti sol forms clear sol which has normal chain structure. On the contrary, in case the amount of water required hydrolysis larger than that for stoichiometry, Ti sol forms suspended sol which has cluster structure. Viscosity of Ti-Sn sol decrease with increasing HCl additive. Gelation of Ti-Sn sol is delayed with increasing HCl and $Sn(OC_2H_5)_4$ additive.

  • PDF

A Study on the Valve Regulated Lead-Acid Battery using Phosphoric Acid Gel Electrolyte (인산 겔 전해질을 사용한 밀폐형 납축전지에 관한 연구)

  • Ju, Chan-Hong;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.296-308
    • /
    • 2003
  • The capacity and long life of gel electrolyte batteries is connected with gas recombination producting $PbO_2$ and Pb electrode. We were prepared with phosphoric acid gel electrolyte to know gel characteristics per density to assemble VRLA batteries. We studied by measuring electrolyte dispersion using Brewster-angle microscope(BAM), charge-discharge cycle and electrode structure using scanning election microscope(SEM) per electrolyte density. As a results, phosphoric acid density 1.210 was excellent gel dispersion in sol condition, electrode condition after fifty cycles in this study.

Measurement of Diffusion Coefficient in Cell-Laden Agarose Gel with Different Cell Concentrations (아가로스 겔에 포함된 세포의 농도가 확산 계수에 미치는 영향 측정)

  • Lee, Byung Ryong;Jin, Songwan
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2013
  • In this study, diffusion coefficients of 20 kDa FITC-dextran in 2% agarose gel with different cell concentrations were measured using fiberoptic-based fluorescence recovery after photobleaching technique. As increasing cell concentration suspended in agarose gel, the diffusion coefficients were decreased. The diffusion coefficient of agarose gel which contains $10{\times}10^6$ cells/ml was decreased to 11% that of in agarose gel without cells. The distribution of fluorescence dye in 3D scaffold was also simulated. The simulation result shows that the diffusion coefficient is more significant factor than the scaffold structure.

Eletron Microscopic Observation of Calcium-Acetylated Seaweed Alginate Gel

  • Jin Woo Lee
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.45-49
    • /
    • 1999
  • Seaweed alginate was acetylated by activated carbon immobilized Pseudomonas syringae in a fluidized bed, up-flow reactor. The acetylation degree of seaweed alginate was about 30%. Calcium-acetylated seaweed alginate gel bead was made and compared to calcium-seaweed alginate gel bead by the scanning electron microscopy (SEM). Structural difference of two gel beads may results from increased viscosity and decreased affinity of acetylated seaweed alginate for calcium ion. On the basis of interior and exterior structure of calcium-acetylated seaweed alginate gels and property of acetylated seaweed alginate, it seems that acetylated seaweed alginate is used for the supporter for electrophoresis and packing materials for liquid chromatography and gel filtration.

  • PDF

Properties of Nano-Hybrid Coating Films Synthesized from Colloidal Silica-Silane (콜로이달 실리카와 실란으로부터 합성된 나노하이브리드 코팅 박막의 특성)

  • Na, Moon-Kyong;Ahn, Myeong-Sang;Kang, Dong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.232-233
    • /
    • 2006
  • In recent years the interest in organic/inorganic hybrid materials has increased at a fast rate. Nano organic-inorganic hybrid composites have shown advantages for preparing hard coating layers. Especially, nano hybrid composite has low environmental pollution. It has high transparency, hardness, toughness, thermal dissociation temperature, hydrophobicity by using nano sized inorganic material. There are many ways in which these materials may be synthesized, a typical one being the use of silica and silanes using the sol-gel process. The structure of sol-gel silica evolves as a result of these successive hydrolysis and condensation reactions and the subsequent drying and curing. The sol-gel reactions are catalyzed by acids and produce silica sol solutions. The silica sol grows until they reach a size where a gel transition occurs and a solid-like gel is formed. Colloidal silica(CS)/silane sol solutions were synthesized in variation with parameters such as different acidity and reaction time. In order to understand their physical and chemical properties, sol-gel coating films were fabricated on glass. From all sol-gel solutions, seasoning effect of sol-gel coating layer on glass was observed.

  • PDF

Evaluation of Porcine Myofibrillar Protein Gel Functionality as Affected by Microbial Transglutaminase and Red Bean [Vignia angularis] Protein Isolate at Various pH Values

  • Jang, Ho Sik;Lee, Hong Chul;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.35 no.6
    • /
    • pp.841-846
    • /
    • 2015
  • This study was investigated to determine the effect of microbial transglutaminase (MTG) with or without red bean protein isolate (RBPI) on the porcine myofibrillar protein (MP) gel functionality at different pH values (pH 5.75-6.5). Cooking yield (CY, %), gel strength (GS, gf), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were determined to measure gel characteristics. Since no differences were observed the interaction between 1% RBPI and pH, data were pooled. CY increased with the addition of 1% RBPI, while it was not affected by pH values. GS increased with increased pH and increased when 1% RBPI was added, regardless of pH. There were distinctive endothermic protein peaks, at 56.55 and 75.02℃ at pH 5.75, and 56.47 and 72.43℃ at pH 6.5 in DSC results, which revealed decreased temperature of the first peak with the addition of 1% RBPI and increased pH. In SEM, a more compact structure with fewer voids was shown with the addition of 1% RBPI and increased pH from 5.75 to 6.5. In addition, the three-dimensional structure was highly dense and hard at pH 6.5 when RBPI was added. These results indicated that the addition of 1% RBPI at pH 6.5 in MTG-mediated MP represent the optimum condition to attain maximum gel-formation and protein gel functionality.

Preparation of Porous Boehmite Gel from Waste AlCl3 Solution (AlCl3 폐액으로부터 다공성 Boehmite Gel의 제조)

  • Park, Byung-Ki;Lee, Hak-Soo;Kim, Young-Ho;Lee, Jung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.11
    • /
    • pp.864-871
    • /
    • 2004
  • Porous pseudo-boehmite gel was prepared through the aging process of amorphous aluminum hydroxides gel precipitated by the hydrolysis reaction of dilute NaOH solution and AlCl$_3$ solution. In this study, the synthesis method was studied on porous pseudo-boehmite gel having maximum pore volume, as being investigated the changes of crystal structure, infrared rays absorption spectrum, BET surface area and pore structure when the hydrolysis reaction is controlled in the range of pH 7.6~11.6 and the aging process is hold up for 2~24 h at 60~10$0^{\circ}C$. We could find that the gel precipitates deposited in in range of pH 7.6~9.6 were developed into porous pseudo-boehmite which surface area was 250~357 $m^2$/g, pore volume was 0.4~0.7 cc/g and average pore size was 58~l14$\AA$. However, the gel precipitates deposited in range of pH 10.6~11.6 were developed into bayerite which pore volume was very little.