DOI QR코드

DOI QR Code

아가로스 겔에 포함된 세포의 농도가 확산 계수에 미치는 영향 측정

Measurement of Diffusion Coefficient in Cell-Laden Agarose Gel with Different Cell Concentrations

  • 이병룡 (한국산업기술대학교 대학원 기계공학과) ;
  • 진송완 (한국산업기술대학교 기계공학과)
  • 투고 : 2013.02.28
  • 심사 : 2013.04.12
  • 발행 : 2013.04.25

초록

In this study, diffusion coefficients of 20 kDa FITC-dextran in 2% agarose gel with different cell concentrations were measured using fiberoptic-based fluorescence recovery after photobleaching technique. As increasing cell concentration suspended in agarose gel, the diffusion coefficients were decreased. The diffusion coefficient of agarose gel which contains $10{\times}10^6$ cells/ml was decreased to 11% that of in agarose gel without cells. The distribution of fluorescence dye in 3D scaffold was also simulated. The simulation result shows that the diffusion coefficient is more significant factor than the scaffold structure.

키워드

참고문헌

  1. Kim, J. K,, 2007, "Understanding Diffusion in Cells and Living Tissues", J. Korean Soc. Visual., Vol. 5, No. 1, pp. 12-15. https://doi.org/10.5407/JKSV.2007.5.1.012
  2. Mauck, R. L., Soltz, M. A., Wang, C. C., Wong, D. D., Chao, P. H., Valhmu, W. B., Hung, C. T. and Ateshian, G. A., 2000, "Functional Tissue Engineering of Articular Cartilage Through Dynamic Loading of Chondrocyte-Seeded Agarose Gels", J. Biomech Eng., Vol. 122, No. 3, pp. 252-260. https://doi.org/10.1115/1.429656
  3. Mauck, R. L., Wang, C. C., Oswald, E. S., Ateshian, G. A. and Hung, C. T., 2003, "The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading", Osteoarthritis and Cartilage, Vol. 11, No. 12, pp. 879-890. https://doi.org/10.1016/j.joca.2003.08.006
  4. Kim, H. J., Park, S. H., Durham, J., Gimble, J. M., Kaplan, D. L. and Dragoo, J. L., 2012, "In vitro chondrogenic differentiation of human adipose-derived stem cells with silk scaffols", J Tissue Eng., Vol. 3, No. 1, 2041731412466405.
  5. Hsieh-Bonassera, N. D., Wu, I., Lin, J. K., Schumacher, B. L., Chen, A. C., Masuda, K., Bugbee, W. D. and Sah, R. L., 2009, "Expansion and redifferentiation of chondrocytes from osteoarthritic cartilage: cells for human cartilage tissue engineering", Tissue Eng Part A., Vol. 15, No. 11, pp. 3513-3523. https://doi.org/10.1089/ten.tea.2008.0628
  6. Salinas, C. S. and Anseth, K. S., 2008, "The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities", Biomaterials, Vol. 29, No. 15, pp. 2370-2377. https://doi.org/10.1016/j.biomaterials.2008.01.035
  7. Hunziker, E. B., Quinn, T. M. and Hauselmann H. J., 2002 "Quantitative structural organization of normal adult human articular cartilage," Osteoarthritis Cartiliage, Vol. 10, No. 7, pp. 564-572. https://doi.org/10.1053/joca.2002.0814
  8. Ballerstadt, R. and Schultz, J. S., 1997, "Competitive-binding assay method based on fluorescence quenching of ligands held in close proximity by a multivalent receptor", Anal Chim Acta., Vol. 345, No. 1-3, pp. 203-212 https://doi.org/10.1016/S0003-2670(97)00042-1
  9. Liu, Y., Zhou, S., Tu, D., Chen, Z., Huang, M., Zhu, H., Ma, E. and Chen, X., 2012, "Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance transfer biodetection, and targeted imaging", J Am Chem Soc., Vol. 134, No. 36, pp. 15083-15090 https://doi.org/10.1021/ja306066a
  10. Fowlkes, J.D., Hullander, E. D., Fletcher, B. L., Retterer, S. T., Melechko, A. V., Hensley, D. K., Simpson, M. L. and Doktycz, M. J., 2006, "Molecular transport in a crowded volume created from vertically aligned carbon nanofibres: a fluorescence recovery after photobleaching study", Nanotechnology., Vol. 17, No. 22, pp. 5659-5668. https://doi.org/10.1088/0957-4484/17/22/021
  11. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. and Webb, W. W., 1976, "Mobility Measurement by Analysis of Fluorescence Photobleaching Recovery Kinetics", Biophys. J., Vol. 16, No. 9, pp. 1055-1069. https://doi.org/10.1016/S0006-3495(76)85755-4
  12. Lam, C. X. F., Mo, X. M., Teoh, S. H. and Hutmacher, D. W., 2002, "Scaffold development using 3D printing with a starch-based polymer", Materials Science and Engineering: C, Vol. 20, No. 1-2, pp. 49-56. https://doi.org/10.1016/S0928-4931(02)00012-7
  13. Cheng, G., Markenscoff, P. and Zygourakis, K., 2009, "A 3D hybrid model for tissue growth: the interplay between cell population and mass transport dynamics", Biophys. J., Vol. 97, No. 2, pp. 401-414. https://doi.org/10.1016/j.bpj.2009.03.067
  14. Magzoub, M., Jin. S. and Verkman, A. S., 2007, "Enhanced Macromolecule Diffusion Deep in Tumors after Enzymatic Digestion of Extracellular Matrix Collagen and its Associated Proteoglycan Decorin", FASEB J., Vol. 22, No. 1, pp. 276-284. https://doi.org/10.1096/fj.07-9150com
  15. Lee, D. H., Lee, J. H., Park, C. H. and Kim, J. K., 2009, "Development of Image-based Fluorescence Photobleaching Technique for Measuring Macromolecule Diffusion in Biological Porous Medium", J. Korean Soc. Visual., Vol. 7, No. 1, pp. 9-13. https://doi.org/10.5407/JKSV.2009.7.1.009
  16. Wu, P. I., Minisini, S. and Edelman, E. R., 2009, "Intramuscular drug transport under mechanical loading: resonance between tissue and uptake", J. Control Release, Vol. 136 No. 2, pp. 99-109. https://doi.org/10.1016/j.jconrel.2009.01.016
  17. Brown, D. A., MacLellan, W. R., Laks, H., Dunn, J. C., Wu, B. M. and Beygui, R. E., 2007, "Analysis of oxygen transport in a diffusion-limited model of engineered heart tissue", Biotechnol. Bioeng., Vol. 97, No. 4, pp. 962-975. https://doi.org/10.1002/bit.21295