• Title/Summary/Keyword: Gel bead

Search Result 75, Processing Time 0.019 seconds

Adsorption of Cupric Ions on Chitosan (키토산을 이용한 중금속(Cu2+) 흡착)

  • Kim, Tae Young;Kim, Kyoung Jin;Moon, Hee;Yang, Jai Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.268-274
    • /
    • 1999
  • The chitosan solution was prepared by dissolving chitosan into 2 wt % aqueous acetic acid solution and then chitosan beads were made by sol-gel method. The average molecular weight and the degree of deacetylation of the chitosan used here were determined to be $8.2{\times}10^5$ and 85%, respectively. chitosan beads were highly porous which was confirmed by SEM photography and BET. Adsorption equilibrium of $Cu^{2+}$ on porous chitosan beads could be represented by Sips equation. The diffusion of cupric ions in the chitosan beads could be explained by pore and surface diffusion mechanisms. Adsorption dynamics of $Cu^{2+}$ in fixed-bed could be simulated by linear driving force approximation (LDFA). It was proven that porous chitosan beads manufactured in this work are good adsorbents for the removal of $Cu^{2+}$.

  • PDF

Rapid Detection of Rifampicin Resistant M. tuberculosis by PCR-SSCP of rpoB Gene in Clinical Specimens (RpoB 유전자 PCR-SSCP법에 의한 임상검체내 Rifampicin 내성 결핵균의 신속진단)

  • Shim, Tae-Sun;Kim, Young-Whan;Lim, Chae-Man;Lee, Sang-Do;Koh, Youn-Suck;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1245-1255
    • /
    • 1997
  • Background : Rifampicin(RFP) is a key component of the antituberculous short-course chemotherapy and the RFP resistance is a marker of multi-drug resistant(MDR) tuberculosis. RPoB gene encodes the $\beta$-subunit of RNA polymerase of M. tuberculosis which is the target of RFP. And rpoB gene mutations are the cause of RFP resistance of M. tuberculosis. Although several reports showed that PCR-SSCP would be a rapid diagnostic method for identifying the RFP resistance, there were few reports Performed using direct, clinical specimens. So we Performed PCR-SSCP analysis of rpoB gene of M. tuberculosis in direct, clinical specimens. Methods : 75 clinical specimens were collected from patients at Asan Medical Center from June to August 1996. After PCR of IS 6110 fragments, 43 both AFB smear-positive and IS6110 fragment PCR-positive specimens were evaluated. The RFP susceptibility test was referred to the referral laboratory of the Korean Tuberculosis Institute. DNA was extracted by bead beater method. And heminested PCR was done using 0.1ul(1uCi) [$\alpha-^{32}P$]-dCTP. SSCP analysis was done using non-denaturating MDE gel electrophoresis. Results : The results of PCR of IS6110 fragments of M. tuberculosis were positive in 55(73%) cases of 75 AFB smear-positive clinical specimens. Of the 55 specimens, RFP susceptibility was confirmed in only 43 specimens. Of the 43 AFB smear-positive and IS6110 fragment-positive specimens, 29 were RFP susceptible and 14 were RFP resistant. All the RFP susceptible 29 strains showed the same mobility compared with that of RFP sensitive H37Rv in SSCP analysis of ropB gene. And all the other RFP resistant 13 strains showed the different mobility. In other words they showed 100% identical results between PCR-SSCP analysis and traditional susceptibility test. Conclusion : The PCR-sseP analysis of rpoB gene in direct clinical specimens could be used as a rapid diagnostic method for detecting RFP resistant M. tuberculosis.

  • PDF

Detection of Pyrazinamide-Resistant Mycobacterium tuberculosis is by PCR-SSCP of pncA Gene (pncA 유전자 PCR-SSCP법을 이용한 결핵균 Pyrazinamide 내성의 진단)

  • Shim, Tae-Sun;Kim, Young-Whan;Chin, Jae-Yong;Lim, Chae-Man;Lee, Sang-Do;Koh, Youn-Suck;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.6
    • /
    • pp.1178-1187
    • /
    • 1998
  • Background : Recently the incidence of tuberculosis is increasing in many countries and control of the disease is further threatened by the emergence of multi-drug resistant tuberculosis. So rapid detection of drug resistance is very important. Pyrazinamide (PZA) is a first-line chemotherapeutic agent for tuberculosis. Now in Korea, we perform PZase activity test instead of actual pyrazinamide susceptibility test for the detection of PZA resistant M. tuberculosis. Recently the pncA gene, encoding the PZase of M. tuberculosis, was completely sequenced. And it was reported that the mutation of pncA gene would be associated with PZA resistance of M. tuberculosis. Therefore we performed this study to evaluate the possibility for the rapid detection of PZA resistant M. tuberculosis using PCR-SSCP of pncA gene. Method : 44 cultured clinical isolates of M. tuberculosis, BCG Tokyo strain. BCG French strain, and one M. bovis isolate were studied. We used H37Rv as the reference strain, The PZase activity test was done at the reference laboratory of Korean Tuberculosis Institute. DNA was extracted by bead-beater method and 561 bp fragment including pncA gene was amplified by PCR. The PCR product were digested by BstB I enzyme. SSCP was done using MDE gel. Of the 44 strains of M. tuberculosis, 22 strains were PZase-positive and other 22 strains were PZase negative. Results : Of the 22 PZase positive strains, 18 strains(82%) showed the same mobility compared with that of H37Rv and 4(18%) showed different mobility. Of the 22 PZase-negative strains, 19(86%) strains showed the same mobility pattern compared with that of H37Rv and 3(14%) showed different mobility. Naturally PZA-resistant BeG-French strain, BCG-Tokyo strain, and one M. bovis isolate showed the same band pattern each other, but their mobility were different from that of H37Rv. The results of PZase activity test and PCR-SSCP of pncA of M. tuberculosis were statistically significantly correlated each other (p<0.01). Conclusion : The PCR-SSCP after BstB I restriction of pncA gene of M. tuberculosis may be a useful method for the rapid detection of PZA-resistant M. tuberculosis.

  • PDF

Rapid detection of Rifampicin- resistant M, tuberculosis by PCR-SSCP of rpoB gene (결핵균의 rpoB유전자 PCR-SSCP법에 의한 Rifampicin 내성의 신속 진단)

  • Shim, Tae Sun;Yoo, Chul-Gyu;Han, Sung Koo;Shim, Young-Soo;Kim, Young Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.6
    • /
    • pp.842-851
    • /
    • 1996
  • Background : Rifampicin(RFP) is a key component of the antituberculous shon-course chemotherapy and the RFP-resistance is a marker of multi-drug resistant(MDR) M. tuberculosis. rpoB gene encodes the ${\beta}$-subunit of RNA polymerase of M. tuberculosis which is the target of RFP. Recent reports show that rpoB gene mutations are the cause of RFP resistance of M. tuberculosis and the main mechanism of rpoB gene mutation is point mutation. And PCR-SSCP is a rapid and easy method for detecting point mutations. So we performed PCR-SSCP of rpoB gene of M. tuberculosis and compared the result with traditional RFP sensitivity test. Method : The 27 RFP sensitive M. tuberculosis culture isolates and 25 RFP resistant isolates were evaluated. The RFP sensitivity test was done at the Korean Tuberculosis istitute. The DNA was extracted by bead beater method and was amplified with primers TR-8 and TR-9 in a 20ul PCR reaction containing 0.1ul(luCi) [${\alpha}-^{32}P$] - dCTP. After amplification, SSCP was done using non-denaturaring polyacrylamide gel electrophoresis. Then direct sequencing was done in cases of different eletrophoretic mobility compared with that of H37Rv. In 19 cases, we compared PCR-SSCP results with patient's clinical course and the results of traditional RFP sensitivity test. Results : 1) All 27 RFP sensitive M. tuberculosis isolates showed the same electrophoretic mobility compared with that of H37Rv. And all 25 RFP resistant M. tuberculosis isolates showed different electrophoretic mobility. 2) The mechanism of rpoB gene mutation of M. tuberculosis is mainly point mutation. 3) The PCR-SSCP results correlate well with traditional RFP sensitivity and patient's clinical response to antituberculous treatment. Conclusion: The PCR-SSCP of rpoB gene is a very sensitive and rapid mehod in detecting RFP- resistant M. tuberculosis.

  • PDF

Cell Migration and Wound Healing Activities of Recombinant Thymosin β-4 Expressed in Escherichia coli (재조합 Thymosin β-4의 세포이동능과 상처치유능)

  • Hong, Kyo-Chang;Choi, Yung Hyun;Kim, Gun-Do;Cha, Hee-Jae;Jeon, Sung-Jong;Nam, Soo-Wan
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.135-141
    • /
    • 2022
  • Thymosin β-4 (TB4) is a small peptide composed of 43 amino acids. To obtain sufficient biologically active mouse TB4 economically, we cloned and overexpressed this gene in an Escherichia coli system. With the isopropyl β-D-1-thiogalactopyranoside induction of the E. coli transformant, TB4 fusion protein with intein- and chitin-binding domain was successfully expressed in the soluble fraction within the E. coli cell. The TB4-intein - chitin-binding domain fusion protein was purified from the soluble fraction of E. coli cell lysate. The affinity chromatography with chitin beads and dithiothreitol-mediated intein self-cleavage reaction releases the TB4 peptide into the stripping solution. Sodium dodecyl sulphate - polyacrylamide gel electrophoresis and Western blot analyses were used to confirm that the recombinant TB4 peptide was produced with the expected size of 5 kDa. We found that the recombinant TB4 stimulated cell migration in the transwell plate chamber assay. After 18 hr of the treatment of the recombinant TB4 with 1 ng/ml concentration, the migration of the HT1080 cell was increased by 20% compared with that of the chemically synthesized TB4. The recombinant TB4 was also observed to promote the healing of a wound area in C57BL/6 mice by as high as 35% compared with that of the chemically synthesized TB4. These results suggest that the recombinant TB4 has better biological activity for cell migration and wound healing than that of the chemically synthesized TB4 peptide.