• Title/Summary/Keyword: Gearbox Noise

Search Result 56, Processing Time 0.023 seconds

Reduction of Rattle Noise in a Direct-Engine PTO Driveline Using an Anti-backlash Gear (안티-백래시 기어를 이용한 엔진 직결식 PTO 전동 라인의 치타음 감소)

  • Shim, Sung-Bo;Park, Young-Jun;Kim, Kyeong-Uk
    • Journal of Biosystems Engineering
    • /
    • v.32 no.3
    • /
    • pp.137-144
    • /
    • 2007
  • An anti-backlash gear was developed to reduce the rattle noise generated from the gearbox of a direct-engine PTO driveline of agricultural tractors under idling. A pair of gears using the anti-backlash gear as driven part was modeled and verified. Using the verified model, a computer simulation was conducted to investigate the effects of design parameters of the anti-backlash gear on the reduction of rattle noise. The optimum values of the design parameters were also determined by the computer simulation. The optimized anti-backlash gear was then manufactured and installed on the experimental PTO driveline for the performance test. Measurement of rattle noise was made to evaluate its performance before and after the driven gear of the PTO gearbox was replaced by the optimized anti-backlash gear. Results of the study were as follows: The optimum values of the design parameters, spring constant and deformation, may be determined by a relationship: $$k{\ge}\frac{4364.7}{150{\delta}-23.564}$$ The optimized anti-backlash gear reduced the rattle noise maximally by 16.9 dBA. This concluded that it would be most effective to use the optimized anti-backlash gear to eliminate the rattle noise in the PTO driveline.

Effects of Design Parameters on Rattle Noise in a Direct Engine-PTO Driveline of Tractors (엔진 직결식 PTO 전동 라인의 주요 설계 변수가 PTO 변속부의 치타음에 미치는 영향)

  • Park Y.J.;Kim K.U.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.4 s.117
    • /
    • pp.323-333
    • /
    • 2006
  • Introduction of a direct engine-PTO driveline to agricultural tractors has reduced production cost and increased transmission efficiency of the PTO driveline. However, this type of PTO driveline has caused a severe rattle noise in the PTO gearbox under idle conditions. This study was conducted to investigate the causes of the rattle noise and the effects of driveline parameters on it. A mathematical model was developed for a direct engine-PTO driveline. The model was proved experimentally to be accurate enough to simulate the dynamic characteristics of the PTO driveline motions. The simulation study showed that the rattle noise was caused by collisions between the driving and driven gears in the PTO gearbox due to velocity variation of the gears, which was induced by torque fluctuations from the engine. It was also found that the rattle noise decreased with the drag torque and mass moment of inertia of the engine flywheel. Smaller mass moment of inertia of the driven gears and backlash also reduced the rattle noise. However, increasing the drag torque and mass moment of the engine flywheel or decreasing the backlash and mass moment of inertia of the driven gears were limited practically by their detrimental effects on transmission efficiency, gear strength and smooth meshing of the gears.

Failure prediction of a motor-driven gearbox in a pulverizer under external noise and disturbance

  • Park, Jungho;Jeon, Byungjoo;Park, Jongmin;Cui, Jinshi;Kim, Myungyon;Youn, Byeng D.
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.185-192
    • /
    • 2018
  • Participants in the Asia Pacific Conference of the Prognostics and Health Management Society 2017 (PHMAP 2017) Data Challenge were given measured vibration signals from motor-driven gearboxes used in pulverizers. Using this information, participants were requested to predict failure dates and the faulty components. The measured signals were affected by significant noise and disturbance, as the pulverizers in the provided data worked under actual operating conditions. This paper thus presents a fault prediction method for a motor-driven gearbox in a pulverizer system that can perform under external noise and disturbance conditions. First, two fault features, an RMS value in the higher frequency zones (HRMS) and an amplitude of a period for high-speed shaft in the quefrency domain ($QA_{HSS}$), were extracted based on frequency analysis using the higher and lower sampling rate data. The two features were then applied to each pulverizer based on results of frequency responses to impact loadings. Then, a regression analysis was used to predict the failure date using the two extracted features. A weighted regression analysis was used to compensate for the imbalance of the features in the given period. In addition, the faulty components in the motor-driven gearboxes were predicted based on the modulated frequency components. The score predicted by the proposed approach was ranked first in the PHMAP 2017 Data Challenge.

Study on the Transmission Error Prediction for a Spur Gear Pair (스퍼기어의 전달오차에 관한 연구)

  • Zhang, Qi;Zhang, Jing;Zhu, Zhong Gang;Wang, Zhen Rong;Xu, Zhe-zhu;Lyu, Sung Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.109-114
    • /
    • 2016
  • Nowadays, lower gear vibration and noise are necessary for drivers in automotive gearbox, which means that transmission gearbox should be optimized to avoid noise annoyance and fatigue before quantity production. Transmission error (T.E.) is the excitation factor that affects the noise level known as gear whine, and is also the dominant source of noise in the gear transmission system. In this paper, the research background, the definition of T.E. and gear micro-modification were firstly presented, and then different transmission errors of loaded torques for the spur gear pair were studied and compared by a commercial software. It was determined that the optimum gear micro-modification could be applied to optimize the transmission error of the loaded gear pair. In the future, a transmission test rig which is introduced in this paper is about to be used to study the T.E. after gear micro-geometry modification. And finally, the optimized modification can be verified by B&K testing equipment in the semi-anechoic room later.