• Title/Summary/Keyword: Gear Whine

Search Result 25, Processing Time 0.025 seconds

Improvement of Axle Noise for Recreational Vehicle (RV 차량의 액슬 소음 음질 개선에 관한 연구)

  • Yu, Dong-Jun;Lee, Sang-Kwon;Jo, Yoon-Kyeong;Choi, Byung-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.323-326
    • /
    • 2004
  • In these days, gear whine noise of the axle and transmission is getting more important for reduction of vehicle noise, because major noise of vehicle was reduced. Therefore, in this paper, axle noise and vibration is measured, and then the modal analysis and running modal analysis is applied for reduction of axle gear whine noise.

  • PDF

Identify Hypoid gear whine noise for Deflection test and Transmission error measurement (하이포이드 기어의 소음원인규명을 위한 디플렉션 테스트와 전달에러 측정에 대한 연구)

  • Choi, Byung-Jae;Oh, Jae-Eung;Park, Sang-Kil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.91-98
    • /
    • 2008
  • Hypoid gears are widely used in rear drive and 4WD vehicle axles. Investigation of their sensitivity to deflections is one of the most important aspects of their design and optimization procedures. The deflection test is performed in the actual gear mounting using completely processed gear. This test should cover the fun operating range of gear loads from no load to peak load. Under peak load the contact pattern should extend to the tooth boundaries without showing a concentration of the contact pattern at any point on the tooth surface. Transmission error is tested on an axle assembly triaxial real car load condition.

  • PDF

Tooth Modification for Spur Gear for Articulated Hauler's Final Drive (트럭 최종감속기 평기어의 치형최적화에 관한 연구)

  • Oh, Sew-Oong;Zhang, Qi;Lee, In-Bum;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.42-47
    • /
    • 2012
  • Construction equipment is heavily loaded during normal operation. In recent years, there is a trend that lower gear noise levels are demanded for drivers to avoid annoyance and fatigue during operation. For articulated hauler's final drive, meshing transmission error(T.E.) is the excitation that leads the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. This paper presents a method for the analysis of the tooth profile modification, and the prediction of transmission error under the loaded torques for the spur gear pair of the articulated hauler's final drive. And the transmission error, transmission error harmonics and contact stress are also calculated and compared before and after tooth modification under one torque. The simulation result shows that the transmission error and contact stress under the loads can be minimized by the appropriate tooth profile modification.

Identify Hypoid gear whine noise for Deflection test and Transmission error measurement (하이포이드 기어의 소음원인규명을 위한 디플렉션 테스트와 전달에러 측정에 대한 연구)

  • Choi, Byung-Jae;Oh, Jae-Eung;Park, Sang-Kil
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1040-1047
    • /
    • 2008
  • Hypoid gears are widely used in rear drive and 4WD vehicle axles. Investigation of their sensitivity to deflections is one of the most important aspects of their design and optimization procedures. The deflection test is performed in the actual gear mounting using completely processed gear. This test should cover the full operating range of gear loads from no load to peak load. Under peak load the contact pattern should extend to the tooth boundaries without showing a concentration of the contact pattern at any point on the tooth surface. Transmission error is tested on an axle assembly triaxial real car load condition.

  • PDF

Identify Hypoid Gear Whine Noise for Deflection Test and Transmission Error Measurement (하이포이드 기어의 소음원인규명을 위한 디플렉션 테스트와 전달오차 측정에 대한 연구)

  • Choi, Byung-Jae;Oh, Jae-Eung;Park, Sang-Gil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.2
    • /
    • pp.127-137
    • /
    • 2009
  • Hypoid gears are widely used in rear drive and 4WD vehicle axles. Investigation of their sensitivity to deflections is one of the most important aspects of their design and optimization procedures. The deflection test is performed in the actual gear mounting using completely processed gear. This test should cover the full operating range of gear loads from no load to peak load. Under peak load the contact pattern should extend to the tooth boundaries without showing a concentration of the contact pattern at any point on the tooth surface. Transmission error is tested on an axle assembly triaxial real car load condition.

Modeling of Transmission Error of A Gear Pair with Modified Teeth (치형수정된 기어쌍의 치합전달오차 모델링)

  • 주상훈;노오현;정동현;배명호;박노길
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.841-848
    • /
    • 1998
  • In the gear manufacturing, tooth modification is usually applied for the prevention of tooth impact during the loading. In contrary, tooth profile error causes amplifying the whine noise which is cumbersome to reduce in the automobile gear box. So optimum quantity of the modifications must be obtained for the good performance in the vibrational sense. In this paper, a formulation to define the tooth curve by considering the profile manufacturing error and loading deformation of the gear tooth is suggested and the transmission error and loading deformation of the gear tooth is suggested and the transmission error with modified tooth in the gear system is evaluated. A pair of gear set is mathematically modelled. The equivalent excitation in the gear vibratonal model is formulated. For the experimental evaluaton on the derived transmission error function, a simple geared system is set up in which the gears are designed to give pre-designed tooth profile modification and manufactured by CNC Wire Cutting Machine. Under slow speed operaton, the transmission error of the gear pair is measured by using two rotational laser vibrometers, compared with the calculated one of which the result shows good agreement.

  • PDF

Identification of the Interior noise Generated by Car Axle and Modification of the Structural on Axle System for Noise Reduction (SUV 용 액슬의 소음원 규명 및 소음 저감을 위한 액슬의 구조변경에 관한 연구)

  • Lee, Ju-Young;Lee, Sang-Kwon;Jo, Yoon-Kyeong;Kim, Jong-Youn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.180-185
    • /
    • 2005
  • Gear whine noise of the axle and transmission is getting more important for reduction of vehicle noise, because major noise of vehicle was reduced. Therefore, in this paper, axle noise and vibration is measured, then the modal analysis and running modal analysis is applied for identification of axle gear whine noise. And To reduce axle noise, Various structural modifications are performed by using FEM and BEM techniques.

  • PDF

An Investigation on Vibration Characteristics of Vehicle Transmission (차량변속기의 진동특성에 대한 연구)

  • 배명호;이형우;박노길
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.107-116
    • /
    • 2000
  • The gear whine noise caused by tooth profile, elastic deformation, machining error, wear is directly correlated with the transmission error of mating gear. It is very important to build up the synthesized countermeasure by the modeling of the excitation forces and analyzing the vibratory characteristics. The mathematical models on the elements of vehicle transmission which is composed of helical gears, bearings, shafts and cases are developed. The elements are assembled by the substructure synthesis method. The cases of transmission are modeled by ANSYS. The system model of vehicle transmission is also verified by the experiments.

  • PDF

A Study on Optimization of Tooth Micro-geometry for a Helical Gear Pair (헬리컬 기어의 치형최적화에 관한 연구)

  • Zhang, Qi;Kang, Jae-Hwa;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.70-75
    • /
    • 2011
  • Nowadays, modern gearboxes are characterized by high torque load demands, low running noise and compact design. Also durability of gearbox is specially a major issue for the industry. For the gearbox which used in wind turbine, gear transmission error(T.E.) is the excitation that leads the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. In this paper, tooth modification for the high speed stage is used to compensate for the deformation of the teeth due to load and to ensure a proper meshing to achieve an optimized tooth contact pattern. The gearbox is firstly modeled in Romax software, and then the various combination analysis of the tooth modification is presented by using Windows LDP software, and the prediction of transmission error under the loaded torque for the helical gear pair is investigated, the transmission error, contact stress, root stress and load distribution are also calculated and compared before and after tooth modification under one torque condition. The simulation result shows that the transmission error and stress under the loads can be minimized by the appropriate tooth modification.