• 제목/요약/키워드: Gaussian linear model

검색결과 176건 처리시간 0.029초

이노베이션 상관관계 테스트를 이용한 잡음인식 (Identification of Noise Covariance by using Innovation Correlation Test)

  • 박성욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.305-307
    • /
    • 1992
  • This paper presents a technique, which identifies both process noise covariance and sensor noise covariance by using innovation correlation test. A correlation test, which checks whether the square root Kalman filter is workingly optimal or not, is given. The system is stochastic autoregressive moving-average model with auxiliary white noise Input. The linear quadratic Gaussian control is used for minimizing stochastic cost function. This paper indentifies Q, R, and estimates parametric matrics $A(q^{-1}),B(q^{-1}),C(q^{-1})$ by means of extended recursive least squares and model reference control. And The proposed technique has been validated in simulation results on the fourth order system.

  • PDF

Secured Authentication through Integration of Gait and Footprint for Human Identification

  • Murukesh, C.;Thanushkodi, K.;Padmanabhan, Preethi;Feroze, Naina Mohamed D.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2118-2125
    • /
    • 2014
  • Gait Recognition is a new technique to identify the people by the way they walk. Human gait is a spatio-temporal phenomenon that typifies the motion characteristics of an individual. The proposed method makes a simple but efficient attempt to gait recognition. For each video file, spatial silhouettes of a walker are extracted by an improved background subtraction procedure using Gaussian Mixture Model (GMM). Here GMM is used as a parametric probability density function represented as a weighted sum of Gaussian component densities. Then, the relevant features are extracted from the silhouette tracked from the given video file using the Principal Component Analysis (PCA) method. The Fisher Linear Discriminant Analysis (FLDA) classifier is used in the classification of dimensional reduced image derived by the PCA method for gait recognition. Although gait images can be easily acquired, the gait recognition is affected by clothes, shoes, carrying status and specific physical condition of an individual. To overcome this problem, it is combined with footprint as a multimodal biometric system. The minutiae is extracted from the footprint and then fused with silhouette image using the Discrete Stationary Wavelet Transform (DSWT). The experimental result shows that the efficiency of proposed fusion algorithm works well and attains better result while comparing with other fusion schemes.

Predicting the Young's modulus of frozen sand using machine learning approaches: State-of-the-art review

  • Reza Sarkhani Benemaran;Mahzad Esmaeili-Falak
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.507-527
    • /
    • 2023
  • Accurately estimation of the geo-mechanical parameters in Artificial Ground Freezing (AGF) is a most important scientific topic in soil improvement and geotechnical engineering. In order for this, one way is using classical and conventional constitutive models based on different theories like critical state theory, Hooke's law, and so on, which are time-consuming, costly, and troublous. The others are the application of artificial intelligence (AI) techniques to predict considered parameters and behaviors accurately. This study presents a comprehensive data-mining-based model for predicting the Young's Modulus of frozen sand under the triaxial test. For this aim, several single and hybrid models were considered including additive regression, bagging, M5-Rules, M5P, random forests (RF), support vector regression (SVR), locally weighted linear (LWL), gaussian process regression (GPR), and multi-layered perceptron neural network (MLP). In the present study, cell pressure, strain rate, temperature, time, and strain were considered as the input variables, where the Young's Modulus was recognized as target. The results showed that all selected single and hybrid predicting models have acceptable agreement with measured experimental results. Especially, hybrid Additive Regression-Gaussian Process Regression and Bagging-Gaussian Process Regression have the best accuracy based on Model performance assessment criteria.

정적 드레이프를 이용한 니트 옷감의 시뮬레이션 파라미터 추정 (Estimating Simulation Parameters for Kint Fabrics from Static Drapes)

  • 주은정;최명걸
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제26권5호
    • /
    • pp.15-24
    • /
    • 2020
  • 본 연구에서는 주어진 옷감 시료의 정적 드레이프 모양으로부터 해당 옷감을 시뮬레이션하기 위해 필요한 시뮬레이션 파라미터를 추정하는 데이터 기반 학습법을 제시한다. 정적 드레이프의 모양을 형성하기 위해 의류 산업계에서 옷감을 물성에 따라 분류하기 위해 사용하는 쿠식 드레이프 (Cusick's drape)에서 착안한 방법을 사용한다. 학습 모델의 입력 벡터는 특정 옷감의 정적 드레이프 모양에서 추출한 특징 벡터와 옷감의 밀도 값으로 구성되고, 출력 벡터는 해당 드레이프 결과를 도출하는 여섯가지 시뮬레이션 파라미터로 구성된다. 실제에 가깝고 편향되지 않은 학습 데이터를 생성하고자 먼저 400가지의 실제 니트 옷감에 대한 시뮬레이션 파라미터를 수집하고 이로부터 GMM (Gaussian mixture model) 생성 모델을 만든다. 다음, GMM 확률분포에 따라 대량의 시뮬레이션 파라미터를 무작위 샘플링한다. 샘플링된 각각의 시뮬레이션 파라미터에 대해 옷감 시뮬레이션을 수행하여 가상의 정적 드레이프 결과를 만들고 이로부터 특징 벡터를 추출한다. 생성된 데이터를 로그선형회기(log-linear regression) 모델로 피팅한다. 학습의 수치적 정확도를 검증하고 시뮬레이션 결과의 시각적 유사도를 비교하여 제시된 방법의 유용성을 확인한다.

IMPLEMENTATION OF DATA ASSIMILATION METHODOLOGY FOR PHYSICAL MODEL UNCERTAINTY EVALUATION USING POST-CHF EXPERIMENTAL DATA

  • Heo, Jaeseok;Lee, Seung-Wook;Kim, Kyung Doo
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.619-632
    • /
    • 2014
  • The Best Estimate Plus Uncertainty (BEPU) method has been widely used to evaluate the uncertainty of a best-estimate thermal hydraulic system code against a figure of merit. This uncertainty is typically evaluated based on the physical model's uncertainties determined by expert judgment. This paper introduces the application of data assimilation methodology to determine the uncertainty bands of the physical models, e.g., the mean value and standard deviation of the parameters, based upon the statistical approach rather than expert judgment. Data assimilation suggests a mathematical methodology for the best estimate bias and the uncertainties of the physical models which optimize the system response following the calibration of model parameters and responses. The mathematical approaches include deterministic and probabilistic methods of data assimilation to solve both linear and nonlinear problems with the a posteriori distribution of parameters derived based on Bayes' theorem. The inverse problem was solved analytically to obtain the mean value and standard deviation of the parameters assuming Gaussian distributions for the parameters and responses, and a sampling method was utilized to illustrate the non-Gaussian a posteriori distributions of parameters. SPACE is used to demonstrate the data assimilation method by determining the bias and the uncertainty bands of the physical models employing Bennett's heated tube test data and Becker's post critical heat flux experimental data. Based on the results of the data assimilation process, the major sources of the modeling uncertainties were identified for further model development.

주파수역 성능을 고려한 유압 위치시스템의 강인 적응 제어 (Robust Adaptive Control of Hydraulic Positioning System Considering Frequency Domain Performance)

  • 김기범;김인수
    • 한국생산제조학회지
    • /
    • 제23권2호
    • /
    • pp.157-163
    • /
    • 2014
  • In this paper, a robust MRAC (model reference adaptive control) scheme is applied to control an electrohydraulic positioning system under various loads. The inverse dead-zone compensator in the control system cancels out the dead-zone response, and an integrator added to the controller provides good position-tracking ability. LQG/LTR (linear quadratic Gaussian control with loop transfer recovery) closed-loop model is used as the reference model for learning the MRAC system. LQG/LTR provides a systematic technique to design the linear controller that optimizes the objective function using some compromise between the control effort and the system performance in the frequency domain. Different external load tests are performed to investigate the effectiveness of the designed MRAC system in real time. The experimental results show that the tracking performance of the proposed system is highly accurate, which offers considerable robustness even with a large change in the load.

기호 코딩을 이용한 유전자 알고리즘 기반 퍼지 다항식 뉴럴네트워크의 설계 (Design of Genetic Algorithms-based Fuzzy Polynomial Neural Networks Using Symbolic Encoding)

  • 이인태;오성권;최정내
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.270-272
    • /
    • 2006
  • In this paper, we discuss optimal design of Fuzzy Polynomial Neural Networks by means of Genetic Algorithms(GAs) using symbolic coding for non-linear data. One of the major subject of genetic algorithms is representation of chromosomes. The proposed model optimized by the means genetic algorithms which used symbolic code to represent chromosomes. The proposed gFPNN used a triangle and a Gaussian-like membership function in premise part of rules and design the consequent structure by constant and regression polynomial (linear, quadratic and modified quadratic) function between input and output variables. The performance of the proposed model is quantified through experimentation that exploits standard data already used in fuzzy modeling. These results reveal superiority of the proposed networks over the existing fuzzy and neural models.

  • PDF

GMDH 알고리즘과 다항식 퍼지추론에 기초한 퍼지 다항식 뉴럴 네트워크 (Fuzzy Polynomial Neural Networks based on GMDH algorithm and Polynomial Fuzzy Inference)

  • 박호성;윤기찬;오성권
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.130-133
    • /
    • 2000
  • In this paper, a new design methodology named FNNN(Fuzzy Polynomial Neural Network) algorithm is proposed to identify the structure and parameters of fuzzy model using PNN(Polynomial Neural Network) structure and a fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Handling), and uses several types of polynomials such as linear, quadratic and modified quadratic besides the biquadratic polynomial used in the GMDH. The premise of fuzzy inference rules defines by triangular and gaussian type membership function. The fuzzy inference method uses simplified and regression polynomial inference method which is based on the consequence of fuzzy rule expressed with a polynomial such as linear, quadratic and modified quadratic equation are used. Each node of the FPNN is defined as fuzzy rules and its structure is a kind of neuro-fuzzy architecture Several numerical example are used to evaluate the performance of out proposed model. Also we used the training data and testing data set to obtain a balance between the approximation and generalization of proposed model.

  • PDF

인도부페 프로세스의 소개: 이론과 응용 (Introduction to the Indian Buffet Process: Theory and Applications)

  • 이영선;이경재;이광민;이재용;서진욱
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.251-267
    • /
    • 2015
  • 인도부페 프로세스는 유한개의 행과 무한개의 열로 이루어진 이진행렬의 분포와 관련된 확률과정이다. 무한특성모형을 유한개의 행과 무한개의 열로 이루어진 이진행렬을 이용해서 표현할 때, 이진행렬에 대한 사전분포로써 인도부페 프로세스가 이용될 수 있다. 본 논문에서는 인도부페 프로세스를 유한특성모형과 연관지어서 유도하는 방법을 소개하고, 베타프로세스와의 관련성을 간략히 설명한다. 실제 모형의 추론에 인도부페 프로세스가 이용되는 예제를 살펴보기 위해서 가우시안 선형모형에 인도부페 프로세스를 적용한 모형화 방법을 언급하고, 깁스표집 알고리즘, 막대 자르기 알고리즘, 변분방법을 이용한 추론방법을 설명한다. 그리고 이 세 가지 알고리즘을 이용하여 이미지 자료를 분석하는데 적용해본다. 나아가 쌍자료 분석, 네트워크 분석, 독립성분 분석에서 인도부페 프로세스가 어떻게 이용될 수 있는지도 알아본다.

Control of Boundary Layer Flow Transition via Distributed Reduced-Order Controller

  • Lee, Keun-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1561-1575
    • /
    • 2002
  • A reduced-order linear feedback controller, which is used to control the linear disturbance in two-dimensional plane Poiseuille flow, is applied to a boundary layer flow for stability control. Using model reduction and linear-quadratic-Gaussian/loop-transfer-recovery control synthesis, a distributed controller is designed from the linearized two-dimensional Navier-Stokes equations. This reduced-order controller, requiring only the wall-shear information, is shown to effectively suppress the linear disturbance in boundary layer flow under the uncertainty of Reynolds number. The controller also suppresses the nonlinear disturbance in the boundary layer flow, which would lead to unstable flow regime without control. The flow is relaminarized in the long run. Other effects of the controller on the flow are also discussed.