• Title/Summary/Keyword: Gaussian integers

Search Result 6, Processing Time 0.018 seconds

The Diophantine Equation ax6 + by3 + cz2 = 0 in Gaussian Integers

  • IZADI, FARZALI;KHOSHNAM, FOAD
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.587-595
    • /
    • 2015
  • In this article, we will examine the Diophantine equation $ax^6+by^3+cz^2=0$, for arbitrary rational integers a, b, and c in Gaussian integers and find all the solutions of this equation for many different values of a, b, and c. Moreover, two equations of the type $x^6{\pm}iy^3+z^2=0$, and $x^6+y^3{\pm}wz^2=0$ are also discussed, where i is the imaginary unit and w is a third root of unity.

Prime Elements and Irreducible Polynomials over Some Imaginary Quadratic Fields

  • Singthongla, Patiwat;Kanasri, Narakorn Rompurk;Laohakosol, Vichian
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.4
    • /
    • pp.581-600
    • /
    • 2017
  • A classical result of A. Cohn states that, if we express a prime p in base 10 as $$p=a_n10^n+a_{n-1}10^{n-1}+{\cdots}+a_110+a_0$$, then the polynomial $f(x)=a_nx^n+a_{n-1}x^{n-1}+{\cdots}+a_1x+a_0$ is irreducible in ${\mathbb{Z}}[x]$. This problem was subsequently generalized to any base b by Brillhart, Filaseta, and Odlyzko. We establish this result of A. Cohn in $O_K[x]$, K an imaginary quadratic field such that its ring of integers, $O_K$, is a Euclidean domain. For a Gaussian integer ${\beta}$ with ${\mid}{\beta}{\mid}$ > $1+{\sqrt{2}}/2$, we give another representation for any Gaussian integer using a complete residue system modulo ${\beta}$, and then establish an irreducibility criterion in ${\mathbb{Z}}[i][x]$ by applying this result.

ON STRONG METRIC DIMENSION OF ZERO-DIVISOR GRAPHS OF RINGS

  • Bhat, M. Imran;Pirzada, Shariefuddin
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.563-580
    • /
    • 2019
  • In this paper, we study the strong metric dimension of zero-divisor graph ${\Gamma}(R)$ associated to a ring R. This is done by transforming the problem into a more well-known problem of finding the vertex cover number ${\alpha}(G)$ of a strong resolving graph $G_{sr}$. We find the strong metric dimension of zero-divisor graphs of the ring ${\mathbb{Z}}_n$ of integers modulo n and the ring of Gaussian integers ${\mathbb{Z}}_n$[i] modulo n. We obtain the bounds for strong metric dimension of zero-divisor graphs and we also discuss the strong metric dimension of the Cartesian product of graphs.

A CLASSIFICATION OF ELLIPTIC CURVES OVER SOME FINITE FIELDS

  • Park, Hwa-Sin;Park, Joog-Soo;Kim, Daey-Eoul
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.591-611
    • /
    • 2001
  • In this paper, we classify elliptic curve by isomorphism classes over some finite fields. We consider finite field as a quotient ring, saying $\mathbb{Z}[i]/{\pi}\mathbb{Z}[i]$ where $\pi$ is a prime element in $\mathbb{Z}[i]$. Here $\mathbb{Z}[i]$ is the ring of Gaussian integers.

Integer Ambiguity Search Technique Using SeparatedGaussian Variables

  • Kim, Do-Yoon;Jang, Jae-Gyu;Kee, Chang-Don
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • Real-Time Kinematic GPS positioning is widely used for many applications.Resolving ambiguities is the key to precise positioning. Integer ambiguity resolution isthe process of resolving the unknown cycle ambiguities of double difference carrierphase data as integers. Two important issues of resolving are efficiency andreliability. In the conventional search techniques, we generally used chi-squarerandom variables for decision variables. Mathematically, a chi-square random variableis the sum of mutually independent, squared zero-mean unit-variance normal(Gaussian) random variables. With this base knowledge, we can separate decisionvariables to several normal random variables. We showed it with related equationsand conceptual diagrams. With this separation, we can improve the computationalefficiency of the process without losing the needed performance. If we averageseparated normal random variables sequentially, averaged values are also normalrandom variables. So we can use them as decision variables, which prevent from asudden increase of some decision variable. With the method using averaged decisionvalues, we can get the solution more quicklv and more reliably.To verify the performance of our proposed algorithm, we conducted simulations.We used some visual diagrams that are useful for intuitional approach. We analyzedthe performance of the proposed algorithm and compared it to the conventionalmethods.

The Principles of Fractal Geometry and Its Applications for Pulp & Paper Industry (펄프·제지 산업에서의 프랙탈 기하 원리 및 그 응용)

  • Ko, Young Chan;Park, Jong-Moon;Shin, Soo-Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.177-186
    • /
    • 2015
  • Until Mandelbrot introduced the concept of fractal geometry and fractal dimension in early 1970s, it has been generally considered that the geometry of nature should be too complex and irregular to describe analytically or mathematically. Here fractal dimension indicates a non-integer number such as 0.5, 1.5, or 2.5 instead of only integers used in the traditional Euclidean geometry, i.e., 0 for point, 1 for line, 2 for area, and 3 for volume. Since his pioneering work on fractal geometry, the geometry of nature has been found fractal. Mandelbrot introduced the concept of fractal geometry. For example, fractal geometry has been found in mountains, coastlines, clouds, lightning, earthquakes, turbulence, trees and plants. Even human organs are found to be fractal. This suggests that the fractal geometry should be the law for Nature rather than the exception. Fractal geometry has a hierarchical structure consisting of the elements having the same shape, but the different sizes from the largest to the smallest. Thus, fractal geometry can be characterized by the similarity and hierarchical structure. A process requires driving energy to proceed. Otherwise, the process would stop. A hierarchical structure is considered ideal to generate such driving force. This explains why natural process or phenomena such as lightning, thunderstorm, earth quakes, and turbulence has fractal geometry. It would not be surprising to find that even the human organs such as the brain, the lung, and the circulatory system have fractal geometry. Until now, a normal frequency distribution (or Gaussian frequency distribution) has been commonly used to describe frequencies of an object. However, a log-normal frequency distribution has been most frequently found in natural phenomena and chemical processes such as corrosion and coagulation. It can be mathematically shown that if an object has a log-normal frequency distribution, it has fractal geometry. In other words, these two go hand in hand. Lastly, applying fractal principles is discussed, focusing on pulp and paper industry. The principles should be applicable to characterizing surface roughness, particle size distributions, and formation. They should be also applicable to wet-end chemistry for ideal mixing, felt and fabric design for papermaking process, dewatering, drying, creping, and post-converting such as laminating, embossing, and printing.