• Title/Summary/Keyword: Gaussian beam mode

Search Result 40, Processing Time 0.022 seconds

The Waveform Model of Laser Altimeter System with Flattened Gaussian Laser

  • Ma, Yue;Wang, Mingwei;Yang, Fanlin;Li, Song
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.363-370
    • /
    • 2015
  • The current waveform model of a laser altimeter is based on a Gaussian laser beam of fundamental mode, while the flattened Gaussian beam has many advantages such as nearly constant energy distribution on the center of the cross-section. Following the theory of the flattened Gaussian beam and the waveform theory of the laser altimeter, some of the primary parameters of the received waveform were derived, and a laser altimetry waveform simulator and waveform processing software were programmed and improved under the circumstance of a flattened Gaussian beam. The result showed that the bias between theoretical and simulated waveforms was less than 3% for every order mode, the waveform width and range error would increase as target slope or order number rose. Under higher order mode, the shapes of the received waveforms were no longer Gaussian, and could be fitted more precisely as a generalized Gaussian function with power bigger than 2. The flattened beam got much better performance for a multi-surface target, especially when the small surface is far from the center of the laser footprint. This article provides the waveform theoretical basis for the use of a flattened Gaussian beam in a laser altimeter.

Stochastic Response of a Hinged-Clamped Beam (Hinged-clamped 보의 확률적 응답특성)

  • Cho, Duk-Sang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.43-51
    • /
    • 2000
  • The response statistics of a hinged-clamped beam under broad-band random excitation is investigated. The random excitation is applied at the nodal point of the second mode. By using Galerkin's method the governing equation is reduced to a system of nonautonomous nonlinear ordinary differential equations. A method based upon the Markov vector approach is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian and non-Gaussian closure methods the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The case of two mode interaction is considered in order to compare it with the case of three mode interaction. The analytical results for two and three mode interactions are also compared with results obtained by Monte Carlo simulation.

  • PDF

A Study on the Effect of Beam Mode on the Size of Hardened Zone in Laser Surface Hardening (레이저 표면경화처리에서 빔의 형태가 경화층 크기에 미치는 영향에 관한 연구)

  • Kim, J.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.64-72
    • /
    • 1993
  • Analytical models for the prediction of the size of hardened zone in laser surface hardening are presented. The models are based on the solutions to the problem of three-dimensional heat flow in plates with infinite thickness. The validity of the model was tested on medium carbon steel for Gaussian mode of beam. Then the model for rectagular beam was used for the predicition of the size of hardened zone on various hardening process parameters. From the calculation results it appeared that the size and shape of the hardened zone are strongly dependent on process parameters such as beam mode, beam size, and traverse speed.

  • PDF

Failure mechanisms in coupled soil-foundation systems

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2018
  • Behavior of soil is usually described with continuum type of failure models such as Mohr-Coulomb or Drucker-Prager model. The main advantage of these models is in a relatively simple and efficient way of predicting the main tendencies and overall behavior of soil in failure analysis of interest for engineering practice. However, the main shortcoming of these models is that they are not able to capture post-peak behavior of soil nor the corresponding failure modes under extreme loading. In this paper we will significantly improve on this state-of-the-art. In particular, we propose the use of a discrete beam lattice model to provide a sharp prediction of inelastic response and failure mechanisms in coupled soil-foundation systems. In the discrete beam lattice model used in this paper, soil is meshed with one-dimensional Timoshenko beam finite elements with embedded strong discontinuities in axial and transverse direction capable of representing crack propagation in mode I and mode II. Mode I relates to crack opening, and mode II relates to crack sliding. To take into account material heterogeneities, we determine fracture limits for each Timoshenko beam with Gaussian random distribution. We compare the results obtained using the discrete beam lattice model against those obtained using the modified three-surface elasto-plastic cap model.

Nonlinear Responses of a Hinged-Clamped Beam under Random Excitation (불규칙 가진되는 회전-고정보의 비선형응답특성)

  • 조덕상;김영종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.427-436
    • /
    • 2000
  • This study presents the nonlinear responses of a hinged-clamped beam under broadband random excitation. By using Galerkin's method the governing equation is reduced to a system or nonautonomous nonlinear ordinary differential equations. The Fokker-Planck equation is used to generate a general first-order differential equation in the joint moments of response coordinates. Gaussian and non-Gaussian closure schemes are used to close the infinite coupled moment equations. The closed equations are then solved for response statistics in terms of system and excitation parameters. The case of two mode interaction is considered in order to compare it with the case of three mode interaction. Monte Carlo simulation is used for numerical verification.

  • PDF

x$^{(3)}$ Measurement through Self-focusing with Non-gaussian Beam (비 Gaussian 빛에 의한 자체집광을 이용한 x$^{(3)}$측정)

  • 이범구
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.428-433
    • /
    • 1993
  • The second harmonic of Q-switched Nd:YAG laser beam with gaussian mode is cut off by pinhole of a certain radius and its central portion passed through pinhole is focused by converging lens. It is confirmed that the shape of this beam in focal region is central symmetric but non-gaussian. Change of transmittance due to self-focusing is investigated by scanning (z-scan) $CS_2$ of 1 mm thickness in the focal region. It is found that the observed results can be consistently explained by Fresnel theory within 1.5% accuracy and efficiency of self-focusing depends on spatial shape of incident beam.

  • PDF

A Study on the Radiation Characteristics of the Conical Corrugated Feed Horn using the Gaussian Beam Mode (가우시안 빔 모드에 의한 원뿔형 컬러게이트 급전 혼의 복사특성에 관한 연구)

  • 장대석;이상설
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.3
    • /
    • pp.515-522
    • /
    • 1994
  • The radiation characteristics of the conical corrugated feed horn are analyzed by the Gaussian beam mode theory. the electric field over the aperture can be expanded in terms of a set of Gaussian-Laguerre modes. It is proved that these modes are the solutions of the wave epuations for the paraxial approximation. A method, using the sum of the mode expansion coefficients instead of calculation only the fundamental mode, is presented in order to reduce the radiation pattern error. For illustrative examples, the radiation patterns of the corrugated horn antenna operting over C, Ku, and mm-wave band are calculated. Our results agree well with the results obtained by the vector potential method over each band, and also agree well with the measured value at 6.175GHz.

  • PDF

Reflection of a gaussian beam from a planar dielectric interface

  • Lee, Yeon H.
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.200-206
    • /
    • 1996
  • When a Gaussian beam is incident to a planar dielectric interface at an angle other than Brewster angle or the critical angle of total reflection, we derive the six nonspecular effects of rotation, lateral shift, focal shift, Rayleigh length change, magnitude and phase changes in the complex amplitude of the reflected beam simultaneously by taking account of the boundary condition. In the derivation we assume a Gaussian beam of fundamental mode to emerge from the interface and then match at the interface the constant, linear, and quadratic variations of the amplitude and phase of the reflected beam with those of the incident beam multiplied by the reflection coefficient. Our calculation shows that the six nonspecular effects can result from a linear variation of the natural logarithm of the reflection coefficient at the interface.

  • PDF

Measurement of Spatial Coherence Function of multy-mode beam by using a Sagnac Interferometer

  • Lee, Chang-Hyeok;Gang, Yun-Sik;No, Jae-U
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.07a
    • /
    • pp.187-189
    • /
    • 2008
  • The spatial coherence function of multy-mode beam was measured by using a Sagnac interferometer and self referencing technique. For leaner polarization laser beam passing through a multy-mode fiber, its change value of spatial mode and polarization from stress of faber and input coupling angle. And each spatial mode have each polarizations, when we simulation Wigner distribution function and Spatial Correlation function of spatial multi-mode beam by using Hermit Gaussian modes leaner sum. We measured spatial coherence function of using by multy-mode fiber. One can use this measurement method to study and characterize the property of multy-mode light field coming out of GRIN multy-mode fiber.

  • PDF

Pridiction of Case Depth in Laser Beam Hardening (레이저 표면경화에서 경화깊이 예측)

  • Kim, Jae-Do;Cho, Chong-du;Seo, Jung-Won;Cho, Yong-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.87-95
    • /
    • 1995
  • In order to predict the case depth and case width in laser transformation hardening, a finite element method was used to analyze the temperature distribution on the material. Laser hardening of the specimens of SM45C and STE11steels was experimented by using the continuous wave CO$_{2}$ laser with the various travel speeds and the defocused Gaussian beam mode. Phosphate coating was adopted on the surface of SM45C to increase the absorption of 10.6 .mu. m laser energy. Experimental data show good agreement with the theoretical predictions. The maximum possible case depth can be predicted for the given laser hardening conditions, such as laser power, and travel speed.

  • PDF