• Title/Summary/Keyword: Gaussian Mixture Component

Search Result 48, Processing Time 0.022 seconds

(Lip Recognition Using Active Shape Model and Gaussian Mixture Model) (Active Shape 모델과 Gaussian Mixture 모델을 이용한 입술 인식)

  • 장경식;이임건
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.454-460
    • /
    • 2003
  • In this paper, we propose an efficient method for recognizing human lips. Based on Point Distribution Model, a lip shape is represented as a set of points. We calculate a lip model and the distribution of shape parameters using Principle Component Analysis and Gaussian mixture, respectively. The Expectation Maximization algorithm is used to determine the maximum likelihood parameter of Gaussian mixture. The lip contour model is derived by using the gray value changes at each point and in regions around the point and used to search the lip shape in a image. The experiments have been performed for many images, and show very encouraging result.

Implementation of the Timbre-based Emotion Recognition Algorithm for a Healthcare Robot Application (헬스케어 로봇으로의 응용을 위한 음색기반의 감정인식 알고리즘 구현)

  • Kong, Jung-Shik;Kwon, Oh-Sang;Lee, Eung-Hyuk
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.43-46
    • /
    • 2009
  • This paper deals with feeling recognition from people's voice to fine feature vectors. Voice signals include the people's own information and but also people's feelings and fatigues. So, many researches are being progressed to fine the feelings from people's voice. In this paper, We analysis Selectable Mode Vocoder(SMV) that is one of the standard 3GPP2 codecs of ETSI. From the analyzed result, we propose voices features for recognizing feelings. And then, feeling recognition algorithm based on gaussian mixture model(GMM) is proposed. It uses feature vectors is suggested. We verify the performance of this algorithm from changing the mixture component.

  • PDF

Independent Component Biplot (독립성분 행렬도)

  • Lee, Su Jin;Choi, Yong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.1
    • /
    • pp.31-41
    • /
    • 2014
  • Biplot is a useful graphical method to simultaneously explore the rows and columns of a two-way data matrix. In particular, principal component factor biplot is a graphical method to describe the interrelationship among many variables in terms of a few underlying but unobservable random variables called factors. If we consider the unobservable variables (which are mutually independent and also non-Gaussian), we can apply the independent component analysis decomposing a mixture of non-Gaussian in its independent components. In this case, if we apply the principal component factor analysis, we cannot clearly describe the interrelationship among many variables. Therefore, in this study, we apply the independent component analysis of Jutten and Herault (1991) decomposing a mixture of non-Gaussian in its independent components. We suggest an independent component biplot to interpret the independent component analysis graphically.

Lip Shape Representation and Lip Boundary Detection Using Mixture Model of Shape (형태계수의 Mixture Model을 이용한 입술 형태 표현과 입술 경계선 추출)

  • Jang Kyung Shik;Lee Imgeun
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.11
    • /
    • pp.1531-1539
    • /
    • 2004
  • In this paper, we propose an efficient method for locating human lips. Based on Point Distribution Model and Principle Component Analysis, a lip shape model is built. Lip boundary model is represented based on the concatenated gray level distribution model. We calculate the distribution of shape parameters using Gaussian mixture. The problem to locate lip is simplified as the minimization problem of matching object function. The Down Hill Simplex Algorithm is used for the minimization with Gaussian Mixture for setting initial condition and refining estimate of lip shape parameter, which can refrain iteration from converging to local minima. The experiments have been performed for many images, and show very encouraging result.

  • PDF

Global Covariance based Principal Component Analysis for Speaker Identification (화자식별을 위한 전역 공분산에 기반한 주성분분석)

  • Seo, Chang-Woo;Lim, Young-Hwan
    • Phonetics and Speech Sciences
    • /
    • v.1 no.1
    • /
    • pp.69-73
    • /
    • 2009
  • This paper proposes an efficient global covariance-based principal component analysis (GCPCA) for speaker identification. Principal component analysis (PCA) is a feature extraction method which reduces the dimension of the feature vectors and the correlation among the feature vectors by projecting the original feature space into a small subspace through a transformation. However, it requires a larger amount of training data when performing PCA to find the eigenvalue and eigenvector matrix using the full covariance matrix by each speaker. The proposed method first calculates the global covariance matrix using training data of all speakers. It then finds the eigenvalue matrix and the corresponding eigenvector matrix from the global covariance matrix. Compared to conventional PCA and Gaussian mixture model (GMM) methods, the proposed method shows better performance while requiring less storage space and complexity in speaker identification.

  • PDF

Color Image Segmentation Based on Morphological Operation and a Gaussian Mixture Model (모폴로지 연산과 가우시안 혼합 모형에 기반한 컬러 영상 분할)

  • Lee Myung-Eun;Park Soon-Young;Cho Wan-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.3 s.309
    • /
    • pp.84-91
    • /
    • 2006
  • In this paper, we present a new segmentation algorithm for color images based on mathematical morphology and a Gaussian mixture model(GMM). We use the morphological operations to determine the number of components in a mixture model and to detect their modes of each mixture component. Next, we have adopted the GMM to represent the probability distribution of color feature vectors and used the deterministic annealing expectation maximization (DAEM) algorithm to estimate the parameters of the GMM that represents the multi-colored objects statistically. Finally, we segment the color image by using posterior probability of each pixel computed from the GMM. The experimental results show that the morphological operation is efficient to determine a number of components and initial modes of each component in the mixture model. And also it shows that the proposed DAEM provides a global optimal solution for the parameter estimation in the mixture model and the natural color images are segmented efficiently by using the GMM with parameters estimated by morphological operations and the DAEM algorithm.

Improved Algorithm for Fully-automated Neural Spike Sorting based on Projection Pursuit and Gaussian Mixture Model

  • Kim, Kyung-Hwan
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.705-713
    • /
    • 2006
  • For the analysis of multiunit extracellular neural signals as multiple spike trains, neural spike sorting is essential. Existing algorithms for the spike sorting have been unsatisfactory when the signal-to-noise ratio(SNR) is low, especially for implementation of fully-automated systems. We present a novel method that shows satisfactory performance even under low SNR, and compare its performance with a recent method based on principal component analysis(PCA) and fuzzy c-means(FCM) clustering algorithm. Our system consists of a spike detector that shows high performance under low SNR, a feature extractor that utilizes projection pursuit based on negentropy maximization, and an unsupervised classifier based on Gaussian mixture model. It is shown that the proposed feature extractor gives better performance compared to the PCA, and the proposed combination of spike detector, feature extraction, and unsupervised classification yields much better performance than the PCA-FCM, in that the realization of fully-automated unsupervised spike sorting becomes more feasible.

A Sequential LiDAR Waveform Decomposition Algorithm

  • Jung, Jin-Ha;Crawford, Melba M.;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.681-691
    • /
    • 2010
  • LiDAR waveform decomposition plays an important role in LiDAR data processing since the resulting decomposed components are assumed to represent reflection surfaces within waveform footprints and the decomposition results ultimately affect the interpretation of LiDAR waveform data. Decomposing the waveform into a mixture of Gaussians involves two related problems; 1) determining the number of Gaussian components in the waveform, and 2) estimating the parameters of each Gaussian component of the mixture. Previous studies estimated the number of components in the mixture before the parameter optimization step, and it tended to suggest a larger number of components than is required due to the inherent noise embedded in the waveform data. In order to tackle these issues, a new LiDAR waveform decomposition algorithm based on the sequential approach has been proposed in this study and applied to the ICESat waveform data. Experimental results indicated that the proposed algorithm utilized a smaller number of components to decompose waveforms, while resulting IMP value is higher than the GLA14 products.

A New Distance Measure for a Variable-Sized Acoustic Model Based on MDL Technique

  • Cho, Hoon-Young;Kim, Sang-Hun
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.795-800
    • /
    • 2010
  • Embedding a large vocabulary speech recognition system in mobile devices requires a reduced acoustic model obtained by eliminating redundant model parameters. In conventional optimization methods based on the minimum description length (MDL) criterion, a binary Gaussian tree is built at each state of a hidden Markov model by iteratively finding and merging similar mixture components. An optimal subset of the tree nodes is then selected to generate a downsized acoustic model. To obtain a better binary Gaussian tree by improving the process of finding the most similar Gaussian components, this paper proposes a new distance measure that exploits the difference in likelihood values for cases before and after two components are combined. The mixture weight of Gaussian components is also introduced in the component merging step. Experimental results show that the proposed method outperforms MDL-based optimization using either a Kullback-Leibler (KL) divergence or weighted KL divergence measure. The proposed method could also reduce the acoustic model size by 50% with less than a 1.5% increase in error rate compared to a baseline system.

Gaussian Density Selection Method of CDHMM in Speaker Recognition (화자인식에서 연속밀도 은닉마코프모델의 혼합밀도 결정방법)

  • 서창우;이주헌;임재열;이기용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.711-716
    • /
    • 2003
  • This paper proposes the method to select the number of optimal mixtures in each state in Continuous Density HMM (Hidden Markov Models), Previously, researchers used the same number of mixture components in each state of HMM regardless spectral characteristic of speaker, To model each speaker as accurately as possible, we propose to use a different number of mixture components for each state, Selection of mixture components considered the probability value of mixture by each state that affects much parameter estimation of continuous density HMM, Also, we use PCA (principal component analysis) to reduce the correlation and obtain the system' stability when it is reduced the number of mixture components, We experiment it when the proposed method used average 10% small mixture components than the conventional HMM, When experiment result is only applied selection of mixture components, the proposed method could get the similar performance, When we used principal component analysis, the feature vector of the 16 order could get the performance decrease of average 0,35% and the 25 order performance improvement of average 0.65%.