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Abstract

In this paper, we present a new segmentation algorithm for color images based on mathematical morphology and a
Gaussian mixture model(GMM). We use the morphological operations to determine the number of components in a mixture
model and to detect their modes of each mixture component. Next, we have adopted the GMM to represent the probability
distribution of color feature vectors and used the deterministic annealing expectation maximization (DAEM) algorithm to
estimate the parameters of the GMM that represents the multi-colored objects statistically. Finally, we segment the color
image by using posterior probability of each pixel computed from the GMM. The experimental results show that the
morphological operation is efficient to determine a number of components and initial modes of each component in the
mixture model. And also it shows that the proposed DAEM provides a global optimal solution for the parameter estimation
in the mixture model and the natural color images are segmented efﬁmenﬂy by using the GMM with parameters estimated
by morphological operations and the DAEM algorithm.

Keywords : Color Image Segmentation, Morphological Operation, Gaussian Mixture Model,
Deterministic Annealing EM.

I. Introduction fundamental issue in low-level computer vision tasks.

Many of the existing segmentation techniques such

The segmentation of a natural color image into an as direct clustering methods generally use a feature
unknown number of distinct and homogeneous vector space for solving image segmentation
regions is a difficult problem and become a problems. Given an image, feature vectors are
extracted from local neighborhoods and mapped into

"AYY, S¥dGa JRAATEAT the space spanned by their coordinates. Significant

{Department of Electronics Engineering, Mokpo

National University) features in the image then correspond to high—-density

* Al Adddy ZA 8 regions In this space. The finite mixture of
(Department of Statistics, Chonnam National multivariate probability distributions has been used as
University) . . ]

olzl: 2006d1923Y, =g d: 20063494 the statistical modeling of a continuous feature

(283)



2006 68 HXtZEE =EX M 43 HSPH A 3 =

spacem

. In this case, these highest density regions
represent clusters centered on the modes of each
component in the finite mixture model.

The widely often used assumption in modeling by
using a finite mixture of distribution is that the
number of components or clusters is small and
known a priori and the individual components obey
multivariate normal distributions. That is, the feature
space can be modeled as a finite mixture of Gaussian
distributions with a known number of components.
However, we cannot recognize the number of colors
composing an observed real image before analyzing
its image. So, we need the method that can
automatically estimate the number of mixture
components. And also the GMM is commonly used to
represent the probability distn'bution of the feature
vector in feature space. The expectation maximization
(EM) algorithm is naturally used for estimating the
parameters of the GMM. But the estimates of
parameters obtained by the EM algorithm are
strongly dependent upon their initial values and they
are sometimes achieved by the local maximum of
total log likelihood.

In this paper, to overcome this problem, we are
going to consider the morphological operations and
the DAEM algorithm. We will show how to apply
them for the estimation of components and
parameters in a mixture model. We adopt the GMM
to represent the probability distribution of the
observed feature vector and perform the image
And this paper

demonstrates the performance of our segmentation

segmentation using this model.

algorithm for the natural color scenes.

. Color histogram and Morphological
Operations

1. 2D color histogram and its smoothing using
Morphological Operations
Normally, natural color images consist of several
objects and they have native color stimuli. The RGB
model is commonly used for representing their colors

and it is a hardware-oriented color model used in

(284)

85

optic device such as the TV monitor, the computer
screen and the color printer. But, it is difficult for
humans to recognize color of objects with this model.
In this case, humans feel colors through the hue,
saturation and brightness percepts. We will use HSI
(Hue, Saturation, Intensity) color model in this paper.

We first translate the RGB color space into the
HSI color space and only consider the chromatic
color components of H and S. Then color. distribution
is obtained by projecting the pixel values in the
selected each object into the color space.

To consider the statistical modeling for an
observed color image, we first construct the 2D
histogram with color components such as hue and
saturation of pixels consisting of a color image and
seek to explicit peaks in the histogram. This relies on
the fact that the colors of objects in the image give
rise to make peaks in the histogram. The main peaks
of the 2D histogram are considered as the centroids
of each cluster of pixels representing dominant colors
and correspond to their regional maxima of the 2D
histogram[Z]. The number and position of main peaks
are important features to segment the observed image
statistically. However, we can’t have any information
about them without a priori knowledge. So we may
need the method that can detect the number and
position of each peak using a morphological operation

31 Fig. 1 shows the color histogram of

of the image
HS components generated from the House image.
Here, since the original histogram of the image has

a large amount of perturbation as being noticed, we

(b) Color Histogram

52~ Habol st HS M 22| s|AETIH
The histogram of HS components for a House
Image. :

(a) House Image
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need to simplify the histogram to remove the
unnecessary trivial peaks from the image histogram
while preserving the most relevant ones. The
smoothing of the histogram of the original image can
be generally conducted by means of the
morphological opening and closing by reconstruction.
opening by
reconstruction to smooth the histogram as follows.

First, we have employed the

For a given 2-D histogram f generated from HS
components of an observed image, the opening by
reconstruction of f by a structuring element b is
defined by the following iterative procedure[‘ﬂ.

(1) Obtain the marker histogram fS&b by eroding
a histogram with a structuring element 4.
(2) Initialize _to be the marker histogram f&b

(3) Repeat the dilation operation of a marker
histogram h, with respect to a mask histogram

f such that A= (h®b)Nf untl

hys1= hy

The morphological opening by reconstruction is not
only to maintain the basic structure of histogram but
also to smooth the histogram by eliminating trivial
peaks that cannot contain the structuring element.

Next, the result of the opening by reconstruction is
applied to the closing by reconstruction operation for
betfer smoothing. It can be implemented by
complementing a histogram, computing its opening by
reconstruction, and then complerrienting the result.
The idea behind the morphological closing is to build
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(b) Partly zoomed result of
histogram (a)

(a) Smoothed Histogram.

. BHeA galo| HESIE S|lAETY
Fig. 2. The smoothed histogram of a House Image.
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an operator tending to recover the initial shape of the
image structures that have been dilated. Fig. 2 shows
the smoothed histogram of a House image using the
opening and closing by reconstruction. We can note
that the original noisy histogram has been smoothed
successfully by vielding a piece-wise constant type
histogram which can reflect the cluster components
precisely.

2. Detection of Modes in the Smoothed
Histogram

Now, we will consider an algorithm to detect the
modes from the smoothed histogram.  First, the
regional maxima of the smoothed histogram can be
used to extract the bhinary components of each
cluster. Regional maxima are connected components
of pixels with the same intensity value whose
external boundary pixels have a value less than this
value. Pixels that are set to one identify regional
maxima and all other pixels are set to zero®, Next,
we have applied a labeling operation to the points in
color domain with regional maxima to identify each
cluster. Labeling process maKkes it possible to
determine automatically the number of cluster
components.

Finally, we compute the center of mass of each
binary connected component to use it as the mode of
each cluster. Fig. 3 shows the binary image of
cluster components and positions of the center of

mass for the color histogram of the house image. We

a3 3 sfA dale] s|AEIY| cfF Z2Fef ofF
t

Fig. 3. The binary image of clusters and positions
modes for the House Image.
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can note that the number of detected modes
corresponds to the number of clusters in the original
House image. The modes will be applied to the
DAEM algorithm to estimate the parameters of the
GMM unsupervisely.

II. Segmentation of a Color image Using a
 Gaussian Mixture Model

1. Modeling of Color images with a GMM

Suppose that a color image consists of a set of
disjoint pixel labeled 1 to N, and that each pixel is
assumed to belong to one of the K distinct color
regions. Here, we will employ a GMM to characterize
the distribution of color feature vectors observed
from each object consisting of a coldr image’®. We
let the groups G >+ G g represent the K possible
regions. Also we let y denotes the finite dimensional
feature vector observed from ; th pixel( j=1..-N).
Then, we adopt the GMM for a distribution of each
feature vector y as defined as the following model

p(y:1©) =Y md(y.; herZp)

k=1

oy

where m , is the mixture proportion for each group

and #(¥:5MZ) denotes a bivariate or trivariate

normal distribution with mean vector MKt and a
covariance matrix X .
Furthermore, let

we Z, -+~ Zy denote the

unobservable group indicator vectors, where the £ th
of Z,
according to the case in which the ;

element Z ,, is taken to be one or zero

th pixel does
or does not belong to the £ th group. Here, if the
is denoted as the prior

parameter vector, T

probabilities in which each pixel belongs to a
particular group, then the probability function of Z;

is given as follows:
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p(z;m) = l;[ﬂkz’* @

Then the distribution of a color image is expressed
by the joint distribution of a complete data vector,
x=(¥,2) and the log likelihood function that can be
formed on the basis of the complete data x if we
adopt the GMM for an observed feature vector, is
given by

log L. (®|x)=log p(y|z;®) +log p(z; m)

K N K N .
DY 7, log(By i sr T + DD Zy log(n,)

k=l i=l

i=1

)

where @ is the vector containing the elements of
® and w.

The problem of maximum likelihood estimation of
® given the observed vector v can be solved by
applying the EM algorithm proposed by Dempster et
al. for the incomplete data”. However the EM
algorithm has two kinds of disadvantages. The first
is hard to avoid unfavorable local maximum of the
log likelihood and the second is overfitting problem.
Thus we have to think about the new method that is
able to improve the EM algorithm. It is known as the
DAEM algorithm based on the principle of maximum
entropy to estimate the parameter[s’g'w].

We consider the complete data log likelihood

log L. (®]X) as a function of the hidden variable z

for a fixed parameter vector ©, and define a cost

function on the hidden variable space Q3 as follows:

H(z;y,®)=-logL, (®|x) (4)

Then we need to minimize E(H(zY,0)) with
respect to probability distribution over the distribution
P(:7) space subject to a constraint on the entropy.
which

in

is known as the
statistical

It yields a quantity,
generalized free

Introducing a Lagrange parameter (3, we arrive at

energy physics.

the following objective function:
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P, 0)=E, ., (H(zY,0)+ S E, (ogF,")
| 5)
The solution of the minimization problem associated
with the generalized free energy in HB",0) with

respect to probability distribution P with a
fixed parameter © is the following Gibbs
distribution:

1
2o, XPCAHE))

Py(z]y,0)= ~exp(—fH (z))

©6)

Hence we can obtain a new posterior distribution,
py(z]y,®) .parameterized by S.
Next, we should find the minimum of with

9(P,”,0) respect to with fixed posterior
distribution  PsZ1¥:®) It means finding the
estimates that minimizes. Since the second term on
the right hand side of the generalized free energy in
Equation (5) is independent of ©, we should find the

value of ® minimizing the first term

Qﬂ @)= Epg) (H(z;y,0)) (7

To achieve this purpose, we can add a new B
-loop, which is called annealing loop, to the original
EM-algorithm and replace the original posterior with

posterior  distribution,  Ps(Z !y, ©)

paraméten'zed by B. Thus we can obtain the
following DAEM algorithm:

the new

/* Initialize all kinds of parameters */
Parameter ©© ; prior distribution,
Y ; posteriof distribution
/* annealing loop */
Label : If A <PBrma then
/* EM loop */

olge o

t=0

Do
E-step:
Compute a posterior density function and an
expectation of a cost function:

p=pP(z]y,0 ")
0,0 ®("”)=Epg> (H(z))

M-step:
Find the parameter values that minimize
Q-function:

" <ming 0,(0]0")

t=t+1
While(satisfying the convergence condition)
BB+
Go to Label
Else exit

Finally, after finishing fully iteration, we can obtain
the conditional expectation of the hidden variable,
Zy given the observed feature data from E-step as
follows.

7% N ( i; 1 ’f: £

o (y)=E(Z,) =N B2 )
(N, B2

; J Jr e (8)

And also we can obtain the estimators of mixing
proportions, the component mean vector and the
matrix from M-step. These are

respectively given as

covariance

and
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2. Segmentation of a Color Image

Suppose that a color image consists of a set of the
K distinct objects or regions. We usually segment a
color image to assign each pixel to some regions or
objects. To do this, we use a posterior probability of
the ; th pixel belonging to kth region in Equation
8.

Next, we try to find what the component or region
has the maximum value among the estimated

posterior probabilities. This is define as

A

Z, = argmax,, g Tkﬂ(yi).? i=1--,N 10)

Then, we can segment a color image by assigning
each pixel to the region or object having the
maximum a posterior probability.

IV. Experimental results
To demonstrate the performance of the proposed

applied the
algorithm to the color images "peppers” and "runner”

segmentation algorithm, we have
in Fig. 4(a) and (b), respectively.
The conversion of the RGB color image to HSI

model i1s carried out and the hue and saturation

(b) "Runner” Image

(@) "Peppers” Image

a8 4. "Peppers"2t “Runner” =

Fig. 4. COriginal Image.
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components are only used as values of the feature
vectors. To find the mode, we have first applied
to the
histogram consisting of the HS components. Here, we
adopted the structuring element with radius 3.

Fig. 5 shows the smoothed histogram of "peppers”

morphological  reconstruction dperations

and "runner” images using the opening and closing
by reconstruction.

Next, a labeling operation has been applied to the
binary components of each cluster being extracted by
the regional maxima of the smoothed histogram to
identify each cluster. Labeling process makes it
possible to determine automatically the number of
cluster components.

Finally, we have computed the center of mass of
each binary connected component to use it as the
mode of each cluster. Fig. 6 shows the binary image
of cluster components and positions of the center of

e

e R

(a) “Peppers” image (b) “Runner” image

a8 5 "peppers’ “runner'dAte| HESIE SIAED

E
Fig. 5 The smoothed histogram of ‘“peppers” and

“runner” images.

as b Y
-t
0 - S
™

(@) “Peppers’ image (b) “Runner” image

a2 6. "Peppers"2t “Runner” ¥Alel 2= HE 23
Fig. 6. Result of detected modes for the “Peppers” and
“Runner” images.
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(a) “Peppers” image {b) “Runner” image

Ea Zat

J™ 7. "Peppers”’?t “Runner’ &4te|
Fig. 7. Segmentation results.

mass for the “peppers” and the “runner” images.

As we can see, the modes have been precisely
detected from the smoothed histogram. The mode
information is fed to the DAEM algorithm to estimate
the parameters of the GMM. The algorithm finally
segments a color image by assigning each pixel to
the
probability. The segmentation results using the

region having the maximum a posterior

proposed algorithm are shown in Fig. 7.

We can see that the homogeneous objects are
partitioned into the same region accurately and the
fine structure is preserved.

V. Conclusions

In this paper, we have proposed algorithm
combining the morphological operations and the
annealing EM  algorithm for
unsupervised segmentation of natural color image.
The the
unsupervised mode detection when the number of

deterministic an

morphological  operations  provide
components is not known a priori. The DAEM
algorithm is the estimation method of various
parameters in the GMM derived from the principle of
maximum entropy to overcome the local maximum
problem associated with the conventional EM
algorithm.

We conclude from the experiments for the real
images that the morphological operations have been
proven to perform well in deteéting the number of
components or clusters in complicated féature spaces,
and the DAEM algorithm provides a global optimal

solution for the ML estimates of the GMM

g 2o vjgiet 2 ¢ 28
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