• Title/Summary/Keyword: Gaussian Gabor frame

Search Result 2, Processing Time 0.018 seconds

Solving Time-dependent Schrödinger Equation Using Gaussian Wave Packet Dynamics

  • Lee, Min-Ho;Byun, Chang Woo;Choi, Nark Nyul;Kim, Dae-Soung
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1269-1278
    • /
    • 2018
  • Using the thawed Gaussian wave packets [E. J. Heller, J. Chem. Phys. 62, 1544 (1975)] and the adaptive reinitialization technique employing the frame operator [L. M. Andersson et al., J. Phys. A: Math. Gen. 35, 7787 (2002)], a trajectory-based Gaussian wave packet method is introduced that can be applied to scattering and time-dependent problems. This method does not require either the numerical multidimensional integrals for potential operators or the inversion of nearly-singular matrices representing the overlap of overcomplete Gaussian basis functions. We demonstrate a possibility that the method can be a promising candidate for the time-dependent $Schr{\ddot{o}}dinger$ equation solver by applying to tunneling, high-order harmonic generation, and above-threshold ionization problems in one-dimensional model systems. Although the efficiency of the method is confirmed in one-dimensional systems, it can be easily extended to higher dimensional systems.

Why Gabor Frames? Two Fundamental Measures of Coherence and Their Role in Model Selection

  • Bajwa, Waheed U.;Calderbank, Robert;Jafarpour, Sina
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.289-307
    • /
    • 2010
  • The problem of model selection arises in a number of contexts, such as subset selection in linear regression, estimation of structures in graphical models, and signal denoising. This paper studies non-asymptotic model selection for the general case of arbitrary (random or deterministic) design matrices and arbitrary nonzero entries of the signal. In this regard, it generalizes the notion of incoherence in the existing literature on model selection and introduces two fundamental measures of coherence-termed as the worst-case coherence and the average coherence-among the columns of a design matrix. It utilizes these two measures of coherence to provide an in-depth analysis of a simple, model-order agnostic one-step thresholding (OST) algorithm for model selection and proves that OST is feasible for exact as well as partial model selection as long as the design matrix obeys an easily verifiable property, which is termed as the coherence property. One of the key insights offered by the ensuing analysis in this regard is that OST can successfully carry out model selection even when methods based on convex optimization such as the lasso fail due to the rank deficiency of the submatrices of the design matrix. In addition, the paper establishes that if the design matrix has reasonably small worst-case and average coherence then OST performs near-optimally when either (i) the energy of any nonzero entry of the signal is close to the average signal energy per nonzero entry or (ii) the signal-to-noise ratio in the measurement system is not too high. Finally, two other key contributions of the paper are that (i) it provides bounds on the average coherence of Gaussian matrices and Gabor frames, and (ii) it extends the results on model selection using OST to low-complexity, model-order agnostic recovery of sparse signals with arbitrary nonzero entries. In particular, this part of the analysis in the paper implies that an Alltop Gabor frame together with OST can successfully carry out model selection and recovery of sparse signals irrespective of the phases of the nonzero entries even if the number of nonzero entries scales almost linearly with the number of rows of the Alltop Gabor frame.