• Title/Summary/Keyword: Gaussian Blur Image

Search Result 28, Processing Time 0.027 seconds

Adaptive Edge-preserving Image Restoration (EDGE를 보존하는 적응 영상 복원)

  • Kim, Nam Chul;Lee, Jae Dug
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.5
    • /
    • pp.726-731
    • /
    • 1986
  • An effective filtering algorithm which can reduce noise and preserve edges for the restoration of an image degraded by additive white Gaussian noise is presented. The algorithm proposed in this paper is an extension of Lee's algorithm modified to use local gradient information as well as local statistics. It does not require image modeling, and removes noise along the orientaiton of edges so that it does not blur the edge.

  • PDF

Depth From Defocus using Wavelet Transform (웨이블릿 변환을 이용한 Depth From Defocus)

  • Choi, Chang-Min;Choi, Tae-Sun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.19-26
    • /
    • 2005
  • In this paper, a new method for obtaining three-dimensional shape of an object by measuring relative blur between images using wavelet analysis has been described. Most of the previous methods use inverse filtering to determine the measure of defocus. These methods suffer from some fundamental problems like inaccuracies in finding the frequency domain representation, windowing effects, and border effects. Besides these deficiencies, a filter, such as Laplacian of Gaussian, that produces an aggregate estimate of defocus for an unknown texture, can not lead to accurate depth estimates because of the non-stationary nature of images. We propose a new depth from defocus (DFD) method using wavelet analysis that is capable of performing both the local analysis and the windowing technique with variable-sized regions for non-stationary images with complex textural properties. We show that normalized image ratio of wavelet power by Parseval's theorem is closely related to blur parameter and depth. Experimental results have been presented demonstrating that our DFD method is faster in speed and gives more precise shape estimates than previous DFD techniques for both synthetic and real scenes.

Development of Correction Technologies for Quantification of Photon Measurement in Bio-Luminescence Image (생체발광영상에서 포톤 검출 정량화를 위한 보정기법의 개발)

  • Tak, Yoon-Oh;Kim, Hyeon-Sik;Park, Hyeong-Ju;Choi, Heung-Kook;Choi, Eun-Seo;Hann, S.-Wook;Lee, Byeong-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.85-92
    • /
    • 2011
  • Bioluminescence imaging (BLI) is the most sensitive animal imaging technique for molecular imaging research. Generally, highly sensitive CCD is used to detect an optical probe introduced in a living mouse. However, in many cases, the light signal emitted from a probe is too small to detect because it is scattered and attenuated by the tissue prior to being detected. The problem is that scattering and attenuation not only inhibit accurate measurement but also make image quality down. Thus we introduced a new method to reduce noise by using property of CCD and method to improve image quality of bioluminescence image by using two steps Gaussian blurring.

Restoration for the censored image vai EM algorithm (EM알고리즘을 이용한 중도절단화상에 대한 복원)

  • 김승구
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.2
    • /
    • pp.309-323
    • /
    • 1997
  • Although there are many photochemical images of which are censored while they are recorded, normal approaches are often applied to the restorations for them. In this case, it yields a restored image which might have serious bias. However, solutions for this problem are hardly found in the research of image restorations. This article provides a method of image restoration via EM algorithm for the censored images of which are contaminated with Gaussian noise and blur, also presents some results of simulation for artificial images censorized.

  • PDF

A Study on Improvement in Digital Image Restoration by a Recursive Vector Processing (순환벡터처리에 의한 디지털 영상복원에 관한 연구)

  • 이대영;이윤현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.8 no.3
    • /
    • pp.105-112
    • /
    • 1983
  • This paper discribes technique of the recursive restoration for the images degraded by linear space invariant blur and additive white Gaussian noise. The image is characterized statistically by tis mean and correlation function. An exponential autocorrelation function has been used to model neighborhood model. The vector model was used because of analytical simplicitly and capability to implement brightness correlation function. Base on the vector model, a two-dimensional discrete stochastic a 12 point neighborhood model for represeting images was developme and used the technique of moving window processing to restore blurred and noisy images without dimensionality increesing, It has been shown a 12 point neighborhood model was found to be more adequate than a 8 point pixel model to obtain optimum pixel estimated. If the image is highly correlated, it is necessary to use a large number of points in the neighborhood in order to have improvements in restoring image. It is believed that these result could be applied to a wide range of image processing problem. Because image processing thchniques normally required a 2-D linear filtering.

  • PDF

Optimized Optomechanical Anti-Aliasing Filter for Digital Camera Photography

  • Lee, Sang Won;Chang, Ryungkee;Moon, Sucbei
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.456-466
    • /
    • 2015
  • We investigated an anti-aliasing (AA) filter for digital camera photography by which the excessively high-frequency components of the image signal are suppressed to avoid the aliasing effect. Our optomechanical AA filter was implemented by applying rapid relative motions to the imaging sensor. By the engineered motion blur of the mechanical dithers, the effective point-spread function (PSF) of the imaging system could be tailored to reject the unwanted high-frequency components of the image. For optimal operations, we developed a spiral filter motion protocol that could produce a Gaussian-like PSF. We experimentally demonstrated that our AA filter provides an improved filtering characteristic with a better compromise of the rejection performance and the signal loss. We also found that the pass band characteristic can be enhanced further by a color-differential acquisition mode. Our filter scheme provides a useful method of digital photography for low-error image measurements as well as for ordinary photographic applications where annoying $moir{\acute{e}}$ patterns must be suppressed efficiently.

A Study on Effectiveness of Designed Composite Filter with Noise Reduction in Ultrasound Image for Diffuse Liver Disease (미만성 간질환의 초음파 영상에서 노이즈 감소를 위한 복합필터의 설계 및 유용성에 관한 연구)

  • Lee, Jin-Soo;Kim, Changsoo;Im, In-Chul;Yang, Sung-Hee
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.2
    • /
    • pp.69-77
    • /
    • 2017
  • This paper proposes a composite filter for noise reduction of image. To improve the image quality by reducing the noise in the liver ultrasound image, we tried to help the accurate image analysis. In the experiment, the top seven composite filters were selected by combining the Gaussian blur filter, the sharpening filter, and the median filter using the ATS-539 ultrasonic phantom, and applied to the ultrasound image in which this was done. As a result, it was found that the values of SNR, CNR and MSR all increased when the top seven composite filters were applied. In addition, PSNR of more than 30 dB, close to SSIM 1 showed that the image loss rate is small. Therefore, the appropriate application of the proposed composite filter in this research will be useful for accurate video reading and analysis.

Precise Edge Detection Method Using Sigmoid Function in Blurry and Noisy Image for TFT-LCD 2D Critical Dimension Measurement

  • Lee, Seung Woo;Lee, Sin Yong;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.69-78
    • /
    • 2018
  • This paper presents a precise edge detection algorithm for the critical dimension (CD) measurement of a Thin-Film Transistor Liquid-Crystal Display (TFT-LCD) pattern. The sigmoid surface function is proposed to model the blurred step edge. This model can simultaneously find the position and geometry of the edge precisely. The nonlinear least squares fitting method (Levenberg-Marquardt method) is used to model the image intensity distribution into the proposed sigmoid blurred edge model. The suggested algorithm is verified by comparing the CD measurement repeatability from high-magnified blurry and noisy TFT-LCD images with those from the previous Laplacian of Gaussian (LoG) based sub-pixel edge detection algorithm and error function fitting method. The proposed fitting-based edge detection algorithm produces more precise results than the previous method. The suggested algorithm can be applied to in-line precision CD measurement for high-resolution display devices.

Development of an Infrared Imaging-Based Illegal Camera Detection Sensor Module in Android Environments (안드로이드 환경에서의 적외선 영상 기반 불법 촬영 카메라 탐지 센서 모듈 개발)

  • Kim, Moonnyeon;Lee, Hyungman;Hong, Sungmin;Kim, Sungyoung
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • Crimes related to illegal cameras are steadily increasing and causing social problems. Owing to the development of camera technology, the miniaturization and high performance of illegal cameras have caused anxiety among many people. This study is for detecting hidden cameras effectively such that they could not be easily detected by human eyes. An image sensor-based module with 940 nm wavelength infrared detection technology was developed, and an image processing algorithm was developed to selectively detect illegal cameras. Based on the Android smartphone environment, image processing technology was applied to an image acquired from an infrared camera, and a detection sensor module that is less sensitive to ambient brightness noise was studied. Experiments and optimization studies were conducted according to the Gaussian blur size, adaptive threshold size, and detection distance. The performance of the infrared image-based illegal camera detection sensor module was excellent. This is expected to contribute to the prevention of crimes related to illegal cameras.

Sharpness Measure Based on the Frequency Domain Information (주파수 도메인 정보를 이용한 영상의 Sharpness 평가 방법)

  • Choi, Hyun-Soo;Lee, Chul-Hee
    • Journal of Broadcast Engineering
    • /
    • v.16 no.3
    • /
    • pp.552-560
    • /
    • 2011
  • In this paper, a new no-reference sharpness measure using frequency domain coefficients is proposed. Although most existing sharpness measures used pixel intensity to compute the blur degree, the proposed sharpness measure computes the sharpness using frequency coefficients. To assess the perceived sharpness of a given image, the image is re-blurred by a Gaussian low pass filter and a new quality measure function was defined using the frequency domain coefficients of the given image and the re-blurred image. To evaluate the proposed algorithms, TID2008 quality assessment database was used. Experimental results show that the proposed quality assessment method showed high correlation with the subjective scores.