• Title/Summary/Keyword: Gauss-Newton Method

Search Result 107, Processing Time 0.034 seconds

A Study on Interpretation of Gravity Data by using Iterative Inversion Methods (반복적(反復的) 역산법(逆算法)에 의(依)한 중력자료(重力資料)의 해석(解析)에 관(關)한 연구(硏究))

  • Roh, Cheol-Hwan;Yang, Sung-Jin;Shin, Chang-Soo
    • Economic and Environmental Geology
    • /
    • v.22 no.3
    • /
    • pp.267-276
    • /
    • 1989
  • This paper presents results of interpretaton of gravity data by iterative nonlinear inversion methods. The gravity data are obtained by a theoretical formula for two-dimensional 2-layer structure. Depths to the basement of the structure are determined from the gravity data by four interative inversion methods. The four inversion methods used here are the Gradient, Gauss-Newton, Newton-Raphson, and Full Newton methods. Inversions are performed by using different initial guesses of depth for the over-determined, even-determined, and under-determined cases. This study shows that the depth can be determined well by all of the methods and most efficiently by the Newton-Raphson method.

  • PDF

Accelerating Levenberg-Marquardt Algorithm using Variable Damping Parameter (가변 감쇠 파라미터를 이용한 Levenberg-Marquardt 알고리즘의 학습 속도 향상)

  • Kwak, Young-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.57-63
    • /
    • 2010
  • The damping parameter of Levenberg-Marquardt algorithm switches between error backpropagation and Gauss-Newton learning and affects learning speed. Fixing the damping parameter induces some oscillation of error and decreases learning speed. Therefore, we propose the way of a variable damping parameter with referring to the alternation of error. The proposed method makes the damping parameter increase if error rate is large and makes it decrease if error rate is small. This method so plays the role of momentum that it can improve learning speed. We tested both iris recognition and wine recognition for this paper. We found out that this method improved learning speed in 67% cases on iris recognition and in 78% cases on wine recognition. It was also showed that the oscillation of error by the proposed way was less than those of other algorithms.

Statistical Estimation and Algorithm in Nonlinear Functions

  • Jea-Young Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.135-145
    • /
    • 1995
  • A new algorithm was given to successively fit the multiexponential function/nonlinear function to data by a weighted least squares method, using Gauss-Newton, Marquardt, gradient and DUD methods for convergence. This study also considers the problem of linear-nonlimear weighted least squares estimation which is based upon the usual Taylor's formula process.

  • PDF

Magnetic Exchange Coupling at The Interface of MR/TbCo Thin Films (자기저항 헤드용 MR/TbCo 박막의 자기교환 결합)

  • 서정교;조순철
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 1996
  • To simulate the characteristics of magnetic exchange coupling at the interface of MR/TbCo thin films, the directions of magnetizations were calculated by minimizing energy in the films. Newton method and Gauss-Seidel method were used. The width of M-H curve increased with TbCo anisotropy constant, and with the thickness of the transition region of TbCo layer. Hysteresis loop width became extremely narrow (less than 10 Oe of coercivity), when the TbCo transition region length was $400\;\AA$. Also the hysteresis loop of films with low interfacial exchange coupling constant was similiar to that of short transition region length. When interfacial exchange coupling constant was 1/100 of perfect coupling, hysteresis loop showed a coercivity of less than 10 Oe. Comparing the measured hysteresis loop of a fabricated sample with that of simulated one, exchange coupling con¬stant could be estimated.

  • PDF

Geometrically Nonlinear Analysis of Higher Order Plate Bending Finite Element (고차 판 유한요소의 기하학적 비선형 해석)

  • Shin, Young Shik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.1-10
    • /
    • 1988
  • A higher order plate bending finite element using cubic in-plane displacement profiles is proposed for geometrically nonlinear analysis of thin and thick plates. The higher order plate bending element has been derived from the three dimensional plate-like continuum by discretization of the equations of motion by Galerkin weighted residual method, together with enforcing higher order plate assumptions. Total Lagrangian formulation has been used for geometrically nonlinear analysis of plates and consistent linearization by Newton-Raphson method has been performed to solve the nonlinear equations. The element characteristics have been computed by, selective reduced integration technique using Gauss quadrature to avoid shear locking phenomenon in case of extremely thin plates. Several numerical examples were solved with FEAP macro program to demonstrate versatility and accuracy of the present higher order plate bending element.

  • PDF

Selective Extended Kalman Filter based Attitude Estimation (선택적 확장 칼만 필터 방식의 자세 추정)

  • Yun, In-Yong;Shim, Jae-Ryong;Kim, Joong-Kyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.973-975
    • /
    • 2016
  • In this paper, we propose a selective extended Kalman filter based accurate pose estimation of the rigid body using a sensor fusion method. The pose of a rigid body can be estimated roughly by the Gauss-Newton method using the acceleration data and geomagnetic data, which can be refined with vision information and the gyro sensor information. However strong external interference noise makes the rough pose estimation difficult. In this paper, according to the measurement level of the external interference noise, the extended Kalman filter selectively uses mostly vision and gyro sensor information to increase the estimation credibility under strong interference noise environment.

  • PDF

Partitioning likelihood method in the analysis of non-monotone missing data

  • Kim Jae-Kwang
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.1-8
    • /
    • 2004
  • We address the problem of parameter estimation in multivariate distributions under ignorable non-monotone missing data. The factoring likelihood method for monotone missing data, termed by Robin (1974), is extended to a more general case of non-monotone missing data. The proposed method is algebraically equivalent to the Newton-Raphson method for the observed likelihood, but avoids the burden of computing the first and the second partial derivatives of the observed likelihood Instead, the maximum likelihood estimates and their information matrices for each partition of the data set are computed separately and combined naturally using the generalized least squares method. A numerical example is also presented to illustrate the method.

  • PDF

Analyses of Non-linear Behavior of Axisymmetric Structure by Finite Element Method (유한요소법을 이용한 축대칭 구조물의 비선형 거동해석)

  • 구영덕;민경탁
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.139-148
    • /
    • 1997
  • A finite element method is programmed to analyse the nonlinear behavior of axisymmetric structures. The lst order Mindlin shell theory which takes into account the transversal shear deformation is used to formulate a conical two node element with six degrees of freedom. To evade the shear locking phenomenon which arises in Mindlin type element when the effect of shear deformation tends to zero, the reduced integration of one point Gauss Quadrature at the center of element is employed. This method is the Updated Lagrangian formulation which refers the variables to the state of the most recent iteration. The solution is searched by Newton-Raphson iteration method. The tangent matrix of this method is obtained by a finite difference method by perturbating the degrees of freedom with small values. For the moment this program is limited to the analyses of non-linear elastic problems. For structures which could have elastic stability problem, the calculation is controled by displacement.

  • PDF

A study on 3-D indoor localization based on visible-light communication considering the inclination and azimuth of the receiver (수신기의 기울기 및 방위를 고려한 가시광 통신기반 3차원 실내 위치인식에 대한 연구)

  • Kim, Won-Yeol;Zin, Hyeon-Cheol;Kim, Jong-Chan;Noh, Duck-Soo;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.647-654
    • /
    • 2016
  • Indoor localization based on visible-light communication using the received signal strength intensity (RSSI) has been widely studied because of its high accuracy compared with other wireless localization methods. However, because the RSSI can vary according to the inclination and azimuth of the receiver, a large error can occur, even at the same position. In this paper, we propose a visible-light communication-based 3-D indoor positioning algorithm using the Gauss-Newton technique in order to reduce the errors caused by the change in the inclination of the receiver. The proposed system reduces the amount of computations by selecting the initial position of the receiver through the linear least-squares method (LSM), which is applied to the RSSIs, and improves the position accuracy by applying the Gauss-Newton technique to the 3-D nonlinear model that contains the RSSIs acquired by the changes in the azimuth and inclination of the receiver. In order to verify the validity of the proposed algorithm in an indoor space with dimensions of $6{\times}6{\times}3m$ where 16 LED lights are installed, we compare and analyze the errors of the conventional linear LSM-based trilateration technique and the proposed algorithm according to the changes in the inclination and azimuth of the receiver. The experimental results show that the location accuracy of the proposed algorithm is improved by 82.5% compared to the conventional LSM-based trilateration technique.

Load Flow Calculation Using Genetic Algorithm (유전자 알고리듬을 이용한 조류계산)

  • Kim, H.;Lee, J.;Cha, J.;Choi, J.;Kwon, S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.78-80
    • /
    • 2005
  • The load flow calculation is one of the most critical issues in electrical power systems. Generally, load flow has been calculated by Gauss-Seidel method and Newton-Raphson method but these methods have some problems such as non-convergence due to heavy load and initial value. In this paper, to overcome such problems, the power flow is calculated by genetic algorithm. At the heavy load, the solution for problem can not be obtained by the Newton-Raphson method. However, it can be solved in case of using genetic algorithm. In this paper, the strong point of this method would be demonstrated in application to an example system.

  • PDF