• Title/Summary/Keyword: Gated recurrent units

Search Result 16, Processing Time 0.025 seconds

Fault Classification of a Blade Pitch System in a Floating Wind Turbine Based on a Recurrent Neural Network

  • Cho, Seongpil;Park, Jongseo;Choi, Minjoo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.287-295
    • /
    • 2021
  • This paper describes a recurrent neural network (RNN) for the fault classification of a blade pitch system of a spar-type floating wind turbine. An artificial neural network (ANN) can effectively recognize multiple faults of a system and build a training model with training data for decision-making. The ANN comprises an encoder and a decoder. The encoder uses a gated recurrent unit, which is a recurrent neural network, for dimensionality reduction of the input data. The decoder uses a multilayer perceptron (MLP) for diagnosis decision-making. To create data, we use a wind turbine simulator that enables fully coupled nonlinear time-domain numerical simulations of offshore wind turbines considering six fault types including biases and fixed outputs in pitch sensors and excessive friction, slit lock, incorrect voltage, and short circuits in actuators. The input data are time-series data collected by two sensors and two control inputs under the condition that of one fault of the six types occurs. A gated recurrent unit (GRU) that is one of the RNNs classifies the suggested faults of the blade pitch system. The performance of fault classification based on the gate recurrent unit is evaluated by a test procedure, and the results indicate that the proposed scheme works effectively. The proposed ANN shows a 1.4% improvement in its performance compared to an MLP-based approach.

Forecasting the Wholesale Price of Farmed Olive Flounder Paralichthys olivaceus Using LSTM and GRU Models (LSTM (Long-short Term Memory)과 GRU (Gated Recurrent Units) 모델을 활용한 양식산 넙치 도매가격 예측 연구)

  • Ga-hyun Lee;Do-Hoon Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.2
    • /
    • pp.243-252
    • /
    • 2023
  • Fluctuations in the price of aquaculture products have recently intensified. In particular, wholesale price fluctuations are adversely affecting consumers. Therefore, there is an emerging need for a study on forecasting the wholesale price of aquaculture products. The present study forecasted the wholesale price of olive flounder Paralichthys olivaceus, a representative farmed fish species in Korea, by constructing multivariate long-short term memory (LSTM) and gated recurrent unit (GRU) models. These deep learning models have recently been proven to be effective for forecasting in various fields. A total of 191 monthly data obtained for 17 variables were used to train and test the models. The results showed that the mean average percent error of LSTM and GRU models were 2.19% and 2.68%, respectively.

A study on training DenseNet-Recurrent Neural Network for sound event detection (음향 이벤트 검출을 위한 DenseNet-Recurrent Neural Network 학습 방법에 관한 연구)

  • Hyeonjin Cha;Sangwook Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.395-401
    • /
    • 2023
  • Sound Event Detection (SED) aims to identify not only sound category but also time interval for target sounds in an audio waveform. It is a critical technique in field of acoustic surveillance system and monitoring system. Recently, various models have introduced through Detection and Classification of Acoustic Scenes and Events (DCASE) Task 4. This paper explored how to design optimal parameters of DenseNet based model, which has led to outstanding performance in other recognition system. In experiment, DenseRNN as an SED model consists of DensNet-BC and bi-directional Gated Recurrent Units (GRU). This model is trained with Mean teacher model. With an event-based f-score, evaluation is performed depending on parameters, related to model architecture as well as model training, under the assessment protocol of DCASE task4. Experimental result shows that the performance goes up and has been saturated to near the best. Also, DenseRNN would be trained more effectively without dropout technique.

Abnormality diagnosis model for nuclear power plants using two-stage gated recurrent units

  • Kim, Jae Min;Lee, Gyumin;Lee, Changyong;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2009-2016
    • /
    • 2020
  • A nuclear power plant is a large complex system with tens of thousands of components. To ensure plant safety, the early and accurate diagnosis of abnormal situations is an important factor. To prevent misdiagnosis, operating procedures provide the anticipated symptoms of abnormal situations. While the more severe emergency situations total less than ten cases and can be diagnosed by dozens of key plant parameters, abnormal situations on the other hand include hundreds of cases and a multitude of parameters that should be considered for diagnosis. The tasks required of operators to select the appropriate operating procedure by monitoring large amounts of information within a limited amount of time can burden operators. This paper aims to develop a system that can, in a short time and with high accuracy, select the appropriate operating procedure and sub-procedure in an abnormal situation. Correspondingly, the proposed model has two levels of prediction to determine the procedure level and the detailed cause of an event. Simulations were conducted to evaluate the developed model, with results demonstrating high levels of performance. The model is expected to reduce the workload of operators in abnormal situations by providing the appropriate procedure to ultimately improve plant safety.

Hybrid phishing site detection system with GRU-based shortened URL determination technique (GRU 기반 단축 URL 판별 기법을 적용한 하이브리드 피싱 사이트 탐지 시스템)

  • Hae-Soo Kim;Mi-Hui Kim
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.213-219
    • /
    • 2023
  • According to statistics from the National Police Agency, smishing crimes using texts or messengers have increased dramatically since COVID-19. In addition, most of the cases of impersonation of public institutions reported to agency were related to vaccination and reward, and many methods were used to trick people into clicking on fake URLs (Uniform Resource Locators). When detecting them, URL-based detection methods cannot detect them properly if the information of the URL is hidden, and content-based detection methods are slow and use a lot of resources. In this paper, we propose a system for URL-based detection using transformer for regular URLs and content-based detection using XGBoost for shortened URLs through the process of determining shortened URLs using GRU(Gated Recurrent Units). The F1-Score of the proposed detection system was 94.86, and its average processing time was 5.4 seconds.

AI based complex sensor application study for energy management in WTP (정수장에서의 에너지 관리를 위한 AI 기반 복합센서 적용 연구)

  • Hong, Sung-Taek;An, Sang-Byung;Kim, Kuk-Il;Sung, Min-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.322-323
    • /
    • 2022
  • The most necessary thing for the optimal operation of a water purification plant is to accurately predict the pattern and amount of tap water used by consumers. The required amount of tap water should be delivered to the drain using a pump and stored, and the required flow rate should be supplied in a timely manner using the minimum amount of electrical energy. The short-term demand forecasting required from the point of view of energy optimization operation among water purification plant volume predictions has been made in consideration of seasons, major periods, and regional characteristics using time series analysis, regression analysis, and neural network algorithms. In this paper, we analyzed energy management methods through AI-based complex sensor applicability analysis such as LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Units), which are types of cyclic neural networks.

  • PDF

Utilizing Deep Learning for Early Diagnosis of Autism: Detecting Self-Stimulatory Behavior

  • Seongwoo Park;Sukbeom Chang;JooHee Oh
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.3
    • /
    • pp.148-158
    • /
    • 2024
  • We investigate Autism Spectrum Disorder (ASD), which is typified by deficits in social interaction, repetitive behaviors, limited vocabulary, and cognitive delays. Traditional diagnostic methodologies, reliant on expert evaluations, frequently result in deferred detection and intervention, particularly in South Korea, where there is a dearth of qualified professionals and limited public awareness. In this study, we employ advanced deep learning algorithms to enhance early ASD screening through automated video analysis. Utilizing architectures such as Convolutional Long Short-Term Memory (ConvLSTM), Long-term Recurrent Convolutional Network (LRCN), and Convolutional Neural Networks with Gated Recurrent Units (CNN+GRU), we analyze video data from platforms like YouTube and TikTok to identify stereotypic behaviors (arm flapping, head banging, spinning). Our results indicate that the LRCN model exhibited superior performance with 79.61% accuracy on the augmented platform video dataset and 79.37% on the original SSBD dataset. The ConvLSTM and CNN+GRU models also achieved higher accuracy than the original SSBD dataset. Through this research, we underscore AI's potential in early ASD detection by automating the identification of stereotypic behaviors, thereby enabling timely intervention. We also emphasize the significance of utilizing expanded datasets from social media platform videos in augmenting model accuracy and robustness, thus paving the way for more accessible diagnostic methods.

Neural Predictive Coding for Text Compression Using GPGPU (GPGPU를 활용한 인공신경망 예측기반 텍스트 압축기법)

  • Kim, Jaeju;Han, Hwansoo
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.3
    • /
    • pp.127-132
    • /
    • 2016
  • Several methods have been proposed to apply artificial neural networks to text compression in the past. However, the networks and targets are both limited to the small size due to hardware capability in the past. Modern GPUs have much better calculation capability than CPUs in an order of magnitude now, even though CPUs have become faster. It becomes possible now to train greater and complex neural networks in a shorter time. This paper proposed a method to transform the distribution of original data with a probabilistic neural predictor. Experiments were performed on a feedforward neural network and a recurrent neural network with gated-recurrent units. The recurrent neural network model outperformed feedforward network in compression rate and prediction accuracy.

Short-Term Water Quality Prediction of the Paldang Reservoir Using Recurrent Neural Network Models (순환신경망 모델을 활용한 팔당호의 단기 수질 예측)

  • Jiwoo Han;Yong-Chul Cho;Soyoung Lee;Sanghun Kim;Taegu Kang
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.46-60
    • /
    • 2023
  • Climate change causes fluctuations in water quality in the aquatic environment, which can cause changes in water circulation patterns and severe adverse effects on aquatic ecosystems in the future. Therefore, research is needed to predict and respond to water quality changes caused by climate change in advance. In this study, we tried to predict the dissolved oxygen (DO), chlorophyll-a, and turbidity of the Paldang reservoir for about two weeks using long short-term memory (LSTM) and gated recurrent units (GRU), which are deep learning algorithms based on recurrent neural networks. The model was built based on real-time water quality data and meteorological data. The observation period was set from July to September in the summer of 2021 (Period 1) and from March to May in the spring of 2022 (Period 2). We tried to select an algorithm with optimal predictive power for each water quality parameter. In addition, to improve the predictive power of the model, an important variable extraction technique using random forest was used to select only the important variables as input variables. In both Periods 1 and 2, the predictive power after extracting important variables was further improved. Except for DO in Period 2, GRU was selected as the best model in all water quality parameters. This methodology can be useful for preventive water quality management by identifying the variability of water quality in advance and predicting water quality in a short period.

Development of a Data-Driven Model for Forecasting Outflow to Establish a Reasonable River Water Management System (합리적인 하천수 관리체계 구축을 위한 자료기반 방류량 예측모형 개발)

  • Yoo, Hyung Ju;Lee, Seung Oh;Choi, Seo Hye;Park, Moon Hyung
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.75-92
    • /
    • 2020
  • In most cases of the water balance analysis, the return flow ratio for each water supply was uniformly determined and applied, so it has been contained a problem that the volume of available water would be incorrectly calculated. Therefore, sewage and wastewater among the return water were focused in this study and the data-driven model was developed to forecast the outflow from the sewage treatment plant. The forecasting results of LSTM (Long Short-Term Memory), GRU (Gated Recurrent Units), and SVR (Support Vector Regression) models, which are mainly used for forecasting the time series data in most fields, were compared with the observed data to determine the optimal model parameters for forecasting outflow. As a result of applying the model, the root mean square error (RMSE) of the GRU model was smaller than those of the LSTM and SVR models, and the Nash-Sutcliffe coefficient (NSE) was higher than those of others. Thus, it was judged that the GRU model could be the optimal model for forecasting the outflow in sewage treatment plants. However, the forecasting outflow tends to be underestimated and overestimated in extreme sections. Therefore, the additional data for extreme events and reducing the minimum time unit of input data were necessary to enhance the accuracy of forecasting. If the water use of the target site was reviewed and the additional parameters that could reflect seasonal effects were considered, more accurate outflow could be forecasted to be ready for climate variability in near future. And it is expected to use as fundamental resources for establishing a reasonable river water management system based on the forecasting results.