• Title/Summary/Keyword: Gate Drive Circuit

Search Result 94, Processing Time 0.029 seconds

A New GTO Driving Technique for Faster Switching (고속 스윗징을 위한 새로운 GTO 구동기법)

  • Kim, Young-Seok;Seo, Beom-Seok;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.244-250
    • /
    • 1994
  • This paper presents the design of a new turn-off gate drive circuit for GTO which can accomplish faster turn-off switching. The major disadvantage of the conventional turn-off gate drive technique is that it has a difficulty in realizing high negative diS1GQT/dt because of VS1RGM(maximum reverse gate voltage) and stray inductances of turn-off gate drive circuit[1~2]. The new trun-off gate drive technique can overcome this problem by adding another turn-off gate drive circuit to the conventional turn-off gate drive circuit. Simulation and experimental results of the new turn-off gate drive circuit in conjunction with chopper circuit verify a faster turn-off switching performance.

  • PDF

Gate Drive Circuit of a Classic Converter for a Switched Reluctance Motor (Switched Reluctance Motor용 Classic Converter의 Gate 구동회로)

  • Lim, J.Y.;Cho, K.Y;Shin, D.J.;Kim, C.H.;Kim, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.325-327
    • /
    • 1995
  • A new gate drive circuit of classic converter for a switched reluctance motor is presented. Conventional gate drive circuit usually consists of the isolated power supplies and signal transferring devices for isolation, such as photo coupler, pulse transformer, and gate drive chips. The proposed gate drive circuit consists of resistors, capacitors, and zenor diodes without isolated power supplies, that make the drive circuit simple and reduce the material cost. The operational modes are classified and analyzed. The characteristics of the phase current and the gate signal of upper switches is investigated with the variation of duty ratio through the experiments.

  • PDF

A New Active Gate Drive Circuit for High Power IGBTs (대용량 IGBT를 위한 새로운 능동 게이트 구동회로)

  • 서범석;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.111-121
    • /
    • 1999
  • This paper deals with an active gate drive (AGD) technolo밍T for high power IGBTs. It is based on an optimal c combination of several requirements necessmy for good switching performance under hard switching conditions, The s scheme specifically combines together the slow drive requirements for low noise and switching stress and the fast driver requirements for high speed switching and low switching energy loss The gate drive can also effectively dampen oscillations during low cunent turnlongrightarrowon transient in the IGBT, This paper looks at the conflicting requirements of the c conventional gate dlive circuit design and the experimental results show that the proposed threelongleftarrowstage active gate dlive t technique can be an effective solution.

  • PDF

A Gate Drive Circuit for Low Switching Losses and Snubber Energy Recovery

  • Shimizu, Toshihisa;Wada, Keiji
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.259-266
    • /
    • 2009
  • In order to increase the power density of power converters, reduction of the switching losses at high-frequency switching conditions is one of the most important issues. This paper presents a new gate drive circuit that enables the reduction of switching losses in both the Power MOSFET and the IGBT. A distinctive feature of this method is that both the turn-on loss and the turn-off loss are decreased simultaneously without using a conventional ZVS circuit, such as the quasi-resonant adjunctive circuit. Experimental results of the switching loss of both the Power MOSFET and the IGBT are shown. In addition, an energy recovery circuit suitable for use in IGBTs that can be realized by modifying the proposed gate drive circuit is also proposed. The effectiveness of both the proposed circuits was confirmed experimentally by the buck-chopper circuit.

A study on the switching character of MOS-GTO and the design of gate drive circuit (MOS-GTO의 스위칭 특성과 Gate Drive 회로 설계에 관한 연구)

  • Roh, Jin-Eep;Seong, Se-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.231-233
    • /
    • 1991
  • This paper discribes a study on the switching character of MOS-GTO and the design of gate drive circuit. Chopping power supply converter, synchronious and asyncronious motor speed adjustment, inverter, etc., needs low drive energy "high frequency" switches. To fulfill these need, switches must have rapid switching time and insulated gate control. MOS-GTO structure is well suited to these constraints. The power switch is serial installation of a GTO thyrister and a MOS Transistor. The gate of the GTO is linked to positive pole of the cascode structure via a MOS high voltage transistor and ground via a transient absorber diode. This high performance MOS-GTO assembly considerably increases the strength which facilitate the drive of GTO thyristers.

  • PDF

A study on the improvement of Drive circuit in the Power Line Communication (전력선 통신환경에서의 구동회로 개선에 관한 연구)

  • Lim, Seung-Ha
    • 전자공학회논문지 IE
    • /
    • v.44 no.4
    • /
    • pp.30-34
    • /
    • 2007
  • The Channel environment is poor in the power line communication because power line proposed power supply use a communication medium. In this paper, we designed gate drive circuit used coupler reducing the signal diminution for the good communication. We analyzed receiving and transmitting operation of the coupler and designed the drive circuit with the suitable impedance. As a result, we improved the environment of impedance variation due to the inter reaction of many electron products. So, to improve BER(45%) enabled us to communicate smoothly in power line communication.

A PWM Control Strategy for Low-speed Operation of Three-level NPC Inverter based on Bootstrap Gate Drive Circuit (부트스트랩 회로를 적용한 3-레벨 NPC 인버터의 저속 운전을 위한 PWM 스위칭 전략)

  • Jung, Jun-Hyung;Ku, Hyun-Keun;Im, Won-Sang;Kim, Wook;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.376-382
    • /
    • 2014
  • This paper proposes the pulse width modulation (PWM) control strategy for low-speed operation in the three-level neutral-point-clamped (NPC) inverters based on the bootstrap gate drive circuit. As a purpose of the cost reduction, several papers have paid attention to the bootstrap circuit applied to the three-level NPC inverter. However, the bootstrap gate driver IC cannot generate the gate signal to the IGBT for low-speed operation, because the bootstrap capacitor voltage decreases under the threshold level. For low-speed operation, the dipolar and partial-dipolar modulations can be the effective solution. However, these modulations have drawbacks in terms of the switching loss and THD. Therefore, this paper proposes the PWM control strategy to operate the inverter at low-speed and to minimize the switching loss and harmonics. The experimental results are presented to verify the validity on the proposed method.

IGBT gate drive circuit using snubber energy (스너버 에너지를 이용한 IGBT 구동 회로)

  • Kim, Sung-Chul;Jeon, Seong-Jeub
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2112-2114
    • /
    • 1998
  • A gate driver suitable for forced switch-mode power converters such as UPS and motor drive system is presented. The proposed gate driver uses regenerated snubber power and requires no separate power supply. This does not impose any additional complexity on the main switch. Experimental results show that the proposed circuit is valid.

  • PDF

Design of a gate driver driving active balancing circuit for BMSs. (BMS용 능동밸런싱 회로 소자 구동용 게이트 구동 칩 설계)

  • Kim, Younghee;Jin, Hongzhou;Ha, Yoongyu;Ha, Panbong;Baek, Juwon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.732-741
    • /
    • 2018
  • In order to maximize the usable capacity of a BMS (battery management system) that uses several battery cells connected in series, a cell balancing technique that equips each cell with the same voltage is needed. In the active cell balancing circuit using a multi-winding transformer, a balancing circuit that transfers energy directly to the cell (cell-to-cell) is composed of a PMOS switch and a gate driving chip for driving the NMOS switch. The TLP2748 photocoupler and the TLP2745 photocoupler are required, resulting in increased cost and reduced integration. In this paper, instead of driving PMOS and NMOS switching devices by using photocoupler, we proposed 70V BCD process based PMOS gate driving circuit, NMOS gate driving circuit, PMOS gate driving circuit and NMOS gate driving circuit with improved switching time. ${\Delta}t$ of the PMOS gate drive switch with improved switching time was 8.9 ns and ${\Delta}t$ of the NMOS gate drive switch was 9.9 ns.

Development of the 120kV/70A High Voltage Switching Circuit with MOSFETs Operated by Simple Gate Drive Unit (120kV/70A MOSFETs Switch의 구동회로 개발)

  • Song In Ho;Shin H. S.;Choi C. H.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.707-710
    • /
    • 2002
  • A 120kV/70A high voltage switch has been installed at Korea Atomic Energy Research Institute in Taejon to supply power with Korea Superconducting Tokamak Advanced Research (KSTAR) Neutral Beam Injection (NBI) system. NBI system requires fast cutoff of the power supply voltage for protection of the grid when arc detected and fast turn-on the voltage for sustaining the beam current. Therefore the high voltage switch and arc current detection circuit are important part of the NBI power supply and there are much need for high voltage solid state switches in NBI system and a broad area of applications. This switch consisted of 100 series connected MOSFETs and adopted the proposed simple and reliable gate drive circuit without bias supply, Various results taken during the commissioning phase with a 100kW resistive load and NBI source are shown. This paper presents the detailed design of 120kV/70A high voltage MOSFETs switch and simple gate drive circuit. Problems with the high voltage switch and gate driver and solutions are also presented.

  • PDF