• Title/Summary/Keyword: Gate Diode

Search Result 135, Processing Time 0.027 seconds

Effects of Transfer Gate on the Photocurrent Characteristics of Gate/Body-Tied MOSFET-Type Photodetector

  • Jang, Juneyoung;Seo, Sang-Ho;Kong, Jaesung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.12-15
    • /
    • 2022
  • In this study, we studied the effects of transfer gate on the photocurrent characteristics of gate/body-tied (GBT) metal-oxide semiconductor field-effect transistor (MOSFET)-type photodetector. The GBT MOSFET-type photodetector has high sensitivity owing to the amplifying characteristic of the photocurrent generated by light. The transfer gate controls the flow of photocurrent by controlling the barrier to holes, thereby varying the sensitivity of the photodetector. The presented GBT MOSFET-type photodetector using a built-in transfer gate was designed and fabricated via a 0.18-㎛ standard complementary metal-oxide-semiconductor (CMOS) process. Using a laser diode, the photocurrent was measured according to the wavelength of the incident light by adjusting the voltage of the transfer gate. Variable sensitivity of the presented GBT MOSFET-type photodetector was experimentally confirmed by adjusting the transfer gate voltage in the range of 405 nm to 980 nm.

A Study on Gate driver with Boot-strap chain to Drive Multi-level PDP Driver Application (Multi-level PDP 구동회로를 위한 Gate driver의 Boot-strap chain에 관한 연구)

  • Nam, Won-Seok;Hong, Sung-Soo;SaKong, Suk-Chin;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.120-126
    • /
    • 2006
  • A gate driver with Boot-strap chain is proposed to drive Multi-level PDP sustain switches. The proposed gate driver uses only one boot-strap capacitor and one diode per each MOSFETs switch without floating power supply. By adoption of this gate driver circuits, the size, weight and the cost of the driver board can be reduced.

Application of Voltage-Controlled 12-Laser Diode Array in the Optical Fiber Communication (전압에 의하여 구동 가능한 12-Laser Diode Array의 광통신에의 응용)

  • Lee, Shang-Shin;Jhee, Yoon-Kyoo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.1-8
    • /
    • 1990
  • We made a 12-Laser Diode Array consisting of 12 Graded Index Separate Confinement (GRINSCH) InGaAs/Inp Buried Heterostructure 4 Quantum Well Laser Diodes and examined the potential of controlling lasing operation of each laser diode by the voltage to its electroabsorption region. Using Si V-Groove with 12 V-grooves, a 12-Laser Diode Array, and 12 optical fibers, we investigated the various characteristics of each laser diode by changing the voltage to its electro-absorption region. Finally, we thought over the promising way of implementing optical local area communication between electric circuit boards or between subscribers and a central office using a 12-Laser Diode Array, Si V-groove, and optical fibers.

  • PDF

Ultra-High Resolution and Large Size Organic Light Emitting Diode Panels with Highly Reliable Gate Driver Circuits

  • Hong Jae Shin
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.1-7
    • /
    • 2023
  • Large-size, organic light-emitting device (OLED) panels based on highly reliable gate driver circuits integrated using InGaZnO thin film transistors (TFTs) were developed to achieve ultra-high resolution TVs. These large-size OLED panels were driven by using a novel gate driver circuit not only for displaying images but also for sensing TFT characteristics for external compensation. Regardless of the negative threshold voltage of the TFTs, the proposed gate driver circuit in OLED panels functioned precisely, resulting from a decrease in the leakage current. The falling time of the circuit is approximately 0.9 ㎲, which is fast enough to drive 8K resolution OLED displays at 120 Hz. 120 Hz is most commonly used as the operating voltage because images consisting of 120 frames per second can be quickly shown on the display panel without any image sticking. The reliability tests showed that the lifetime of the proposed integrated gate driver is at least 100,000 h.

Implementation of Logic Gates Using Organic Thin Film Transistor for Gate Driver of Flexible Organic Light-Emitting Diode Displays (유기 박막 트랜지스터를 이용한 유연한 디스플레이의 게이트 드라이버용 로직 게이트 구현)

  • Cho, Seung-Il;Mizukami, Makoto
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.87-96
    • /
    • 2019
  • Flexible organic light-emitting diode (OLED) displays with organic thin-film transistors (OTFTs) backplanes have been studied. A gate driver is required to drive the OLED display. The gate driver is integrated into the panel to reduce the manufacturing cost of the display panel and to simplify the module structure using fabrication methods based on low-temperature, low-cost, and large-area printing processes. In this paper, pseudo complementary metal oxide semiconductor (CMOS) logic gates are implemented using OTFTs for the gate driver integrated in the flexible OLED display. The pseudo CMOS inverter and NAND gates are designed and fabricated on a flexible plastic substrate using inkjet-printed OTFTs and the same process as the display. Moreover, the operation of the logic gates is confirmed by measurement. The measurement results show that the pseudo CMOS inverter can operate at input signal frequencies up to 1 kHz, indicating the possibility of the gate driver being integrated in the flexible OLED display.

Dependence of Turn-On Voltage and Surface State Density on the Silicon Crystallographic Orientation (실리콘 결정의 방향성에 따른 Turn-On 전사과 추면대융단파의 상대성에 관한 연구)

  • 성영권;성만영;조철제;고기만;이병득
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.4
    • /
    • pp.157-163
    • /
    • 1984
  • The object of this paper is to investigte the gate controlled diode structure for ionic concentration measurement. It includes device fabrication, characterization, device physics and modeling of the gate controlled diode structure. The differences of turn on voltages and surface generation currents in the (100) and (111) silicon crystallographic orientation of the sample device were observed. Therefore the dependence of these two factors of the silicon crystallographic orientation was investigated. It was observed that drifts arose after extended immersion of the sample device in acid or base solutions. The surface generation-recombination velocity of both (100) and (111) increased. The increase in the interfacial traps for both surface, determined by the turn on voltage was directly proportional to the surface generation-recombination velocity increase.

  • PDF

A study on the switching character of MOS-GTO and the design of gate drive circuit (MOS-GTO의 스위칭 특성과 Gate Drive 회로 설계에 관한 연구)

  • Roh, Jin-Eep;Seong, Se-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.231-233
    • /
    • 1991
  • This paper discribes a study on the switching character of MOS-GTO and the design of gate drive circuit. Chopping power supply converter, synchronious and asyncronious motor speed adjustment, inverter, etc., needs low drive energy "high frequency" switches. To fulfill these need, switches must have rapid switching time and insulated gate control. MOS-GTO structure is well suited to these constraints. The power switch is serial installation of a GTO thyrister and a MOS Transistor. The gate of the GTO is linked to positive pole of the cascode structure via a MOS high voltage transistor and ground via a transient absorber diode. This high performance MOS-GTO assembly considerably increases the strength which facilitate the drive of GTO thyristers.

  • PDF

A study on gate driver with Boot-strap chain to drive Multi-level PDP driver application (Multi-level을 사용한 PDP 구동회로를 위한 Gate driver 의 Boot-strap chain 에 관한 연구)

  • Nam, Won-Seok;Kim, Jun-Hyoung;Song, Suk-Ho;Roh, Chung-Wook;Hong, Sung-Soo;SaKong, Suk-Chin
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.99-101
    • /
    • 2005
  • A gate driver with Boot-strap chain is proposed to drive Multi-level PDP sustain switches. The proposed gate driver uses only one boot-strap capacitor and one diode per each MOSFETs switch without floating power supply. By adoption of this gate driver circuits, the size, weight and the cost of the drivel board can be reduced.

  • PDF

Clamping-diode Circuit for Marine Controlled-source Electromagnetic Transmitters

  • Song, Hongxi;Zhang, Yiming;Gao, Junxia;Zhang, Yu;Feng, Xinyue
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.395-406
    • /
    • 2018
  • Marine controlled-source electromagnetic transmitters (MCSETs) are important in marine electromagnetic exploration systems. They play a crucial role in the exploration of solid mineral resources, marine oil, and gas and in marine engineering evaluation. A DC-DC controlled-source circuit is typically used in traditional MCSETs, but using this circuit in MCSETs causes several problems, such as large voltage ringing of the high-frequency diode, heating of the insulated-gate bipolar transistor (IGBT) module, high temperature of the high-frequency transformer, loss of the duty cycle, and low transmission efficiency of the controlled-source circuit. This paper presents a clamping-diode circuit for MCSET (CDC-MCSET). Clamping diodes are added to the controlled-source circuit to reduce the loss of the duty ratio and the voltage peak of the high-frequency diode. The temperature of the high-frequency diode, IGBT module, and transformer is decreased, and the service life of these devices is prolonged. The power transmission efficiency of the controlled-source circuit is also improved. Saber simulation and a 20 KW MCSET are used to verify the correctness and effectiveness of the proposed CDC-MCSET.

Analysis of the Output Characteristics of IGZO TFT with Double Gate Structure (더블 게이트 구조 적용에 따른 IGZO TFT 특성 분석)

  • Kim, Ji Won;Park, Kee Chan;Kim, Yong Sang;Jeon, Jae Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.281-285
    • /
    • 2020
  • Oxide semiconductor devices have become increasingly important because of their high mobility and good uniformity. The channel length of oxide semiconductor thin film transistors (TFTs) also shrinks as the display resolution increases. It is well known that reducing the channel length of a TFT is detrimental to the current saturation because of drain-induced barrier lowering, as well as the movement of the pinch-off point. In an organic light-emitting diode (OLED), the lack of current saturation in the driving TFT creates a major problem in the control of OLED current. To obtain improved current saturation in short channels, we fabricated indium gallium zinc oxide (IGZO) TFTs with single gate and double gate structures, and evaluated the electrical characteristics of both devices. For the double gate structure, we connected the bottom gate electrode to the source electrode, so that the electric potential of the bottom gate was fixed to that of the source. We denote the double gate structure with the bottom gate fixed at the source potential as the BGFP (bottom gate with fixed potential) structure. For the BGFP TFT, the current saturation, as determined by the output characteristics, is better than that of the conventional single gate TFT. This is because the change in the source side potential barrier by the drain field has been suppressed.