• Title/Summary/Keyword: Gastrointestinal microbiome

Search Result 44, Processing Time 0.03 seconds

Diet-Induced Gut Dysbiosis and Leaky Gut Syndrome

  • Yu-Rim Chae;Yu Ra Lee;Young-Soo Kim;Ho-Young Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.747-756
    • /
    • 2024
  • Chronic gut inflammation promotes the development of metabolic diseases such as obesity. There is growing evidence which suggests that dysbiosis in gut microbiota and metabolites disrupt the integrity of the intestinal barrier and significantly impact the level of inflammation in various tissues, including the liver and adipose tissues. Moreover, dietary sources are connected to the development of leaky gut syndrome through their interaction with the gut microbiota. This review examines the effects of these factors on intestinal microorganisms and the communication pathways between the gut-liver and gut-brain axis. The consumption of diets rich in fats and carbohydrates has been found to weaken the adherence of tight junction proteins in the gastrointestinal tract. Consequently, this allows endotoxins, such as lipopolysaccharides produced by detrimental bacteria, to permeate through portal veins, leading to metabolic endotoxemia and alterations in the gut microbiome composition with reduced production of metabolites, such as short-chain fatty acids. However, the precise correlation between gut microbiota and alternative sweeteners remains uncertain, necessitating further investigation. This study highlights the significance of exploring the impact of diet on gut microbiota and the underlying mechanisms in the gut-liver and gut-brain axis. Nevertheless, limited research on the gut-liver axis poses challenges in comprehending the intricate connections between diet and the gut-brain axis. This underscores the need for comprehensive studies to elucidate the intricate gut-brain mechanisms underlying intestinal health and microbiota.

Dosage-Related Prebiotic Effects of Inulin in Formula-Fed Infants

  • Oswari, Hanifah;Widodo, Ariani Dewi;Handayani, Frieda;Juffrie, Mohammad;Sundjaya, Tonny;Bindels, Jacques;Hegar, Badriul
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.1
    • /
    • pp.63-71
    • /
    • 2019
  • Purpose: The aim of this study was to identify the minimally meaningful dosage of inulin leading to a prebiotic effect in Indonesian infants. Methods: In a randomized controlled double-blinded, parallel, 3-arm intervention study, 164 healthy formula-fed infants aged 3 to 5 months first obtained formula-A (without inulin) during a 4-week adaptation period. Subsequently, 142 subjects were subjected to a 4-week feeding period by administering either formula-A (no inulin), formula-B (0.2 g/100 mL inulin) or formula-C (0.4 g/100 mL inulin). The primary outcome parameter was %-bifidobacteria in faecal samples determined using quantitative polymerase chain reaction analyses. Secondary outcome parameters were faecal %-lactobacilli, pH and stool frequency, and consistency. Growth and tolerance/adverse effects were recorded as safety parameters. Results: Typical %-bifidobacteria and %-lactobacilli at the end of the adaptation period in the study population were 14% and 2%, respectively. For faecal pH, significant differences between formula groups A vs. C and A vs. B were found at the end of the intervention period. Testing for differences in faecal %-bifidobacteria and %-lactobacilli between groups was hampered by non-normal data set distributions; no statistically significant differences were obtained. Comparisons within groups revealed that only in formula group C, all the three relevant parameters exhibited a significant effect with an increase in faecal %-bifidobacteria and %-lactobacilli and a decrease in pH. Conclusion: A consistent prebiotic effect along with a decrease in pH and increase in %-bifidobacteria and %-lactobacilli was found only in the group administered 0.4 g inulin/100 mL.

Gerneral concept of dietary fiber and it's functionality (식품 중 식이섬유(Dietary fiber)의 의미와 기능성 고찰 -식이섬유의 특성과 기능을 중심으로-)

  • Shin, Dong-Hwa
    • Food Science and Industry
    • /
    • v.52 no.1
    • /
    • pp.84-99
    • /
    • 2019
  • Dietary fiber is defined as soluble and insoluble polysaccharide consisted in the plant cell wall-associated fibers naturally occurring in fruits, vegetables, and cereal products, and of isolated fibers that are added to processed foods which are also artificially modified. There are so many difference types of dietary fibers as arabinoxylan, polydextrose chicory, oligosccharide. inulin, pectin, bran, cellulose, ${\beta}$-glucan, resistant starch and some seaweed polymers as alginate. Most of them provide many biological benefits in the intestine, as lower risk for developing coronary heart disease, stroke, hypertension, diabetes, obesity and some of the gastrointestinal disease like as colon cancer. And also lowering cholesterol levels, improves glycemic and insulin sensitivity to non-diabetic and diabetic persons including immune system. Beside of many benefits, average consumers in developed and under developing countries take far less amounts of dietary fiber that international organization recommended. Adequate intake of dietary fiber is 14g/1,000kcal base using the energy guide line of 2,000kcal/day for women and 26,000 kcal/day for men, dietary intake is 28g/day of adult women and 36g/day for adult men. The mechanisms behind the reported effects of dietary fiber on metabolic health are not fully well established. It is suggested that changes in intestinal viscosity resulting mucus increasing, macro-nutrients absorption, rate of passage of large intestinal, production of short chain fatty acids by fermentation. Production of gut hormones and changes of microbiota in intestine. It is necessary to do more research in this field in the future and combined interdisciplinary works together.

Associations of physical activity with gut microbiota in pre-adolescent children

  • Santarossa, Sara;Sitarik, Alexandra R.;Johnson, Christine Cole;Li, Jia;Lynch, Susan V.;Ownby, Dennis R.;Ramirez, Alex;Yong, Germaine LM.;Cassidy-Bushrow, Andrea E.
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.4
    • /
    • pp.24-37
    • /
    • 2021
  • [Purpose] To determine whether physical activity (PA), primarily the recommended 60 minutes of moderate-to-vigorous PA, is associated with gut bacterial microbiota in 10-year-old children. [Methods] The Block Physical Activity Screener, which provides minutes/day PA variables, was used to determine whether the child met the PA recommendations. 16S rRNA sequencing was performed on stool samples from the children to profile the composition of their gut bacterial microbiota. Differences in alpha diversity metrics (richness, Pielou's evenness, and Faith's phylogenetic diversity) by PA were determined using linear regression, whereas beta diversity (unweighted and weighted UniFrac) relationships were assessed using PERMANOVA. Taxon relative abundance differentials were determined using DESeq2. [Results] The analytic sample included 321 children with both PA and 16S rRNA sequencing data (mean age [SD] =10.2 [0.8] years; 54.2% male; 62.9% African American), where 189 (58.9%) met the PA recommendations. After adjusting for covariates, meeting the PA recommendations as well as minutes/day PA variables were not significantly associated with gut richness, evenness, or diversity (p ≥ 0.19). However, meeting the PA recommendations (weighted UniFrac R2 = 0.014, p = 0.001) was significantly associated with distinct gut bacterial composition. These compositional differences were partly characterized by increased abundance of Megamonas and Anaerovorax as well as specific Christensenellaceae_R-7_group taxa in children with higher PA. [Conclusion] Children who met the recommendations of PA had altered gut microbiota compositions. Whether this translates to a reduced risk of obesity or associated metabolic diseases is still unclear.

Composition of Human Breast Milk Microbiota and Its Role in Children's Health

  • Notarbartolo, Veronica;Giuffre, Mario;Montante, Claudio;Corsello, Giovanni;Carta, Maurizio
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.25 no.3
    • /
    • pp.194-210
    • /
    • 2022
  • Human milk contains a number of nutritional and bioactive molecules including microorganisms that constitute the so-called "Human Milk Microbiota (HMM)". Recent studies have shown that not only bacterial but also viral, fungal, and archaeal components are present in the HMM. Previous research has established, a "core" microbiome, consisting of Firmicutes (i.e., Streptococcus, Staphylococcus), Proteobacteria (i.e., Serratia, Pseudomonas, Ralstonia, Sphingomonas, Bradyrhizobium), and Actinobacteria (i.e., Propionibacterium, Corynebacterium). This review aims to summarize the main characteristics of HMM and the role it plays in shaping a child's health. We reviewed the most recent literature on the topic (2019-2021), using the PubMed database. The main sources of HMM origin were identified as the retrograde flow and the entero-mammary pathway. Several factors can influence its composition, such as maternal body mass index and diet, use of antibiotics, time and type of delivery, and mode of breastfeeding. The COVID-19 pandemic, by altering the mother-infant dyad and modifying many of our previous habits, has emerged as a new risk factor for the modification of HMM. HMM is an important contributor to gastrointestinal colonization in children and therefore, it is fundamental to avoid any form of perturbation in the HMM that can alter the microbial equilibrium, especially in the first 100 days of life. Microbial dysbiosis can be a trigger point for the development of necrotizing enterocolitis, especially in preterm infants, and for onset of chronic diseases, such as asthma and obesity, later in life.

Fecal Microbiota Transplantation via Commercial Oral Capsules for Chronic Enteropathies in Dogs and Cats

  • Min-Ok Ryu;Soh-Yeon Lee;Se-Hoon Kim;Hwa-Young Youn;Kyoung-Won Seo
    • Journal of Veterinary Clinics
    • /
    • v.41 no.3
    • /
    • pp.150-156
    • /
    • 2024
  • This retrospective case series assessed the effectiveness of commercially available oral fecal microbiota transplantation (FMT) for treating chronic enteropathies in eight animals, five dogs, and three cats, between 2020 and 2023 at the Seoul National University Veterinary Medical Teaching Hospital. Chronic enteropathies, often resistant to conventional therapies, present a significant challenge in veterinary medicine. To assess oral capsule FMT's effectiveness (Doggybiome® one capsule daily for dogs and Kittybiome® one capsule daily for cats) as a universal adjunctive therapy for chronic enteropathies across species not responding to traditional treatments. This retrospective case series applied a uniform evaluation of gastrointestinal symptoms and treatment efficacy, utilizing established scoring systems (Canine Inflammatory Bowel Disease Activity Index [CIBDAI] and Canine Chronic Enteropathy Clinical Activity Index [CCECAI] for dogs, Feline Chronic Enteropathy Activity Index [FCEAI] for cats) before and one month after FMT. This approach ensured consistency in hypothesis testing across the study population. Results revealed significant improvements in clinical indices post-FMT, with notable reductions in the CIBDAI, CCECAI, and FCEAI scores (p < 0.05). Additionally, symptoms such as anorexia, lethargy, diarrhea, vomiting, and weight loss showed marked improvement, with normalization of appetite and activity levels observed in most cases. No adverse effects were reported, indicating the safety and tolerability of this treatment. This study highlights the potential of oral capsule FMT as a viable therapeutic option for dogs and cats with chronic enteropathies unresponsive to conventional treatments, providing a new avenue for clinical management. Further research is warranted to expand these findings and explore the microbiome changes associated with FMT in veterinary patients.

Carvacrol improves blood lipid and glucose in rats with type 2 diabetes mellitus by regulating short-chain fatty acids and the GPR41/43 pathway

  • Yan Sun;Hai Qu;Xiaohong Niu;Ting Li;Lijuan Wang;Hairui Peng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia and dyslipidemia. Carvacrol (CAR) has demonstrated the potential to mitigate dyslipidemia. This study aims to investigate whether CAR can modulate blood glucose and lipid levels in a T2DM rat model by regulating short-chain fatty acids (SCFAs) and the GPR41/43 pathway. The T2DM rat model was induced by a high-fat diet combined with low-dose streptozocin injection and treated with oral CAR and/or mixed antibiotics. Fasting blood glucose, oral glucose tolerance, and insulin tolerance tests were assessed. Serum lipid parameters, hepatic and renal function indicators, tissue morphology, and SCFAs were measured. In vitro, high glucose (HG)-induced IEC-6 cells were treated with CAR, and optimal CAR concentration was determined. HG-induced IEC-6 cells were treated with SCFAs or/and GPR41/43 agonists. CAR significantly reduced blood lipid and glucose levels, improved tissue damage, and increased SCFA levels in feces and GPR41/43 expression in colonic tissues of T2DM rats. CAR also attenuated HG-induced apoptosis of IEC-6 cells and enhanced GPR41/43 expression. Overall, these findings suggest that CAR alleviates blood lipid and glucose abnormalities in T2DM rats by modulating SCFAs and the GPR41/43 pathway.

Gut microbiota-generated metabolites: missing puzzles to hosts' health, diseases, and aging

  • Yan Zhang;Shibo Wei;Hang Zhang;Yunju Jo;Jong-Sun Kang;Ki-Tae Ha;Jongkil Joo;Hyun Joo Lee;Dongryeol Ryu
    • BMB Reports
    • /
    • v.57 no.5
    • /
    • pp.207-215
    • /
    • 2024
  • The gut microbiota, an intricate community of bacteria residing in the gastrointestinal system, assumes a pivotal role in various physiological processes. Beyond its function in food breakdown and nutrient absorption, gut microbiota exerts a profound influence on immune and metabolic modulation by producing diverse gut microbiota-generated metabolites (GMGMs). These small molecules hold potential to impact host health via multiple pathways, which exhibit remarkable diversity, and have gained increasing attention in recent studies. Here, we elucidate the intricate implications and significant impacts of four specific metabolites, Urolithin A (UA), equol, Trimethylamine N-oxide (TMAO), and imidazole propionate, in shaping human health. Meanwhile, we also look into the advanced research on GMGMs, which demonstrate promising curative effects and hold great potential for further clinical therapies. Notably, the emergence of positive outcomes from clinical trials involving GMGMs, typified by UA, emphasizes their promising prospects in the pursuit of improved health and longevity. Collectively, the multifaceted impacts of GMGMs present intriguing avenues for future research and therapeutic interventions.

Profiling of endogenous metabolites and changes in intestinal microbiota distribution after GEN-001 (Lactococcus lactis) administration

  • Min-Gul Kim;Suin Kim;Ji-Young Jeon;Seol Ju Moon;Yong-Geun Kwak;Joo Young Na;SeungHwan Lee;Kyung-Mi Park;Hyo-Jin Kim;Sang-Min Lee;Seo-Yeon Choi;Kwang-Hee Shin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.153-164
    • /
    • 2024
  • This study aimed to identify metabolic biomarkers and investigate changes in intestinal microbiota in the feces of healthy participants following administration of Lactococcus lactis GEN-001. GEN-001 is a single-strain L. lactis strain isolated from the gut of a healthy human volunteer. The study was conducted as a parallel, randomized, phase 1, open design trial. Twenty healthy Korean males were divided into five groups according to the GEN-001 dosage and dietary control. Groups A, B, C, and D1 received 1, 3, 6, and 9 GEN-001 capsules (1 × 1011 colony forming units), respectively, without dietary adjustment, whereas group D2 received 9 GEN-001 capsules with dietary adjustment. All groups received a single dose. Fecal samples were collected 2 days before GEN-001 administration to 7 days after for untargeted metabolomics and gut microbial metagenomic analyses; blood samples were collected simultaneously for immunogenicity analysis. Levels of phenylalanine, tyrosine, cholic acid, deoxycholic acid, and tryptophan were significantly increased at 5-6 days after GEN-001 administration when compared with predose levels. Compared with predose, the relative abundance (%) of Parabacteroides and Alistipes significantly decreased, whereas that of Lactobacillus and Lactococcus increased; Lactobacillus and tryptophan levels were negatively correlated. A single administration of GEN-001 shifted the gut microbiota in healthy volunteers to a more balanced state as evidenced by an increased abundance of beneficial bacteria, including Lactobacillus, and higher levels of the metabolites that have immunogenic properties.

IL-17 and IL-17C Signaling Protects the Intestinal Epithelium against Diisopropyl Fluorophosphate Exposure in an Acute Model of Gulf War Veterans' Illnesses

  • Kristen M. Patterson;Tyler G. Vajdic;Gustavo J. Martinez;Axel G. Feller;Joseph M. Reynolds
    • IMMUNE NETWORK
    • /
    • v.21 no.5
    • /
    • pp.35.1-35.16
    • /
    • 2021
  • Gulf War Veterans' Illnesses (GWI) encompasses a broad range of unexplained symptomology specific to Veterans of the Persian Gulf War. Gastrointestinal (GI) distress is prominent in veterans with GWI and often presents as irritable bowel syndrome (IBS). Neurotoxins, including organophosphorus pesticides and sarin gas, are believed to have contributed to the development of GWI, at least in a subset of Veterans. However, the effects of such agents have not been extensively studied for their potential impact to GI disorders and immunological stability. Here we utilized an established murine model of GWI to investigate deleterious effects of diisopropyl fluorophosphate (DFP) exposure on the mucosal epithelium in vivo and in vitro. In vivo, acute DFP exposure negatively impacts the mucosal epithelium by reducing tight junction proteins and antimicrobial peptides as well as altering intestinal microbiome composition. Furthermore, DFP treatment reduced the expression of IL-17 in the colonic epithelium. Conversely, both IL-17 and IL-17C treatment could combat the negative effects of DFP and other cholinesterase inhibitors in murine intestinal organoid cells. Our findings demonstrate that acute exposure to DFP can result in rapid deterioration of mechanisms protecting the GI tract from disease. These results are relevant to suspected GWI exposures and could help explain the propensity for GI disorders in GWI Veterans.