DOI QR코드

DOI QR Code

Associations of physical activity with gut microbiota in pre-adolescent children

  • Santarossa, Sara (Department of Public Health Sciences, Henry Ford Health System) ;
  • Sitarik, Alexandra R. (Department of Public Health Sciences, Henry Ford Health System) ;
  • Johnson, Christine Cole (Department of Public Health Sciences, Henry Ford Health System) ;
  • Li, Jia (Department of Public Health Sciences, Henry Ford Health System) ;
  • Lynch, Susan V. (Department of Medicine, University of California) ;
  • Ownby, Dennis R. (Department of Pediatrics, Georgia Regents University) ;
  • Ramirez, Alex (Department of Public Health Sciences, Henry Ford Health System) ;
  • Yong, Germaine LM. (Department of Medicine, University of California) ;
  • Cassidy-Bushrow, Andrea E. (Department of Public Health Sciences, Henry Ford Health System)
  • Received : 2021.10.29
  • Accepted : 2021.12.19
  • Published : 2021.12.31

Abstract

[Purpose] To determine whether physical activity (PA), primarily the recommended 60 minutes of moderate-to-vigorous PA, is associated with gut bacterial microbiota in 10-year-old children. [Methods] The Block Physical Activity Screener, which provides minutes/day PA variables, was used to determine whether the child met the PA recommendations. 16S rRNA sequencing was performed on stool samples from the children to profile the composition of their gut bacterial microbiota. Differences in alpha diversity metrics (richness, Pielou's evenness, and Faith's phylogenetic diversity) by PA were determined using linear regression, whereas beta diversity (unweighted and weighted UniFrac) relationships were assessed using PERMANOVA. Taxon relative abundance differentials were determined using DESeq2. [Results] The analytic sample included 321 children with both PA and 16S rRNA sequencing data (mean age [SD] =10.2 [0.8] years; 54.2% male; 62.9% African American), where 189 (58.9%) met the PA recommendations. After adjusting for covariates, meeting the PA recommendations as well as minutes/day PA variables were not significantly associated with gut richness, evenness, or diversity (p ≥ 0.19). However, meeting the PA recommendations (weighted UniFrac R2 = 0.014, p = 0.001) was significantly associated with distinct gut bacterial composition. These compositional differences were partly characterized by increased abundance of Megamonas and Anaerovorax as well as specific Christensenellaceae_R-7_group taxa in children with higher PA. [Conclusion] Children who met the recommendations of PA had altered gut microbiota compositions. Whether this translates to a reduced risk of obesity or associated metabolic diseases is still unclear.

Keywords

Acknowledgement

We thank the participants of the WHEALS study.

References

  1. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, George SM, Olson RD. The physical activity guidelines for Americans. Jama. 2018;320:2020-8. https://doi.org/10.1001/jama.2018.14854
  2. Katzmarzyk PT, Denstel KD, Beals K, Carlson J, Crouter SE, McKenzie TL, Pate RR, Sisson SB, Staiano AE, Stanish H, Ward DS. Results from the United States 2018 report card on physical activity for children and youth. J Phys Act Health. 2018;15:S422-4. https://doi.org/10.1123/jpah.2018-0476
  3. Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. 2010;7:1-6. https://doi.org/10.1186/1479-5868-7-1
  4. Poitras VJ, Gray CE, Borghese MM, Carson V, Chaput JP, Janssen I, Katzmarzyk PT, Pate RR, Connor Gorber S, Kho ME, Sampson M. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41:S197-239. https://doi.org/10.1139/apnm-2015-0663
  5. Quiroga R, Nistal E, Estebanez B, Porras D, Juarez-Fernandez M, Martinez-Florez S, Garcia-Mediavilla MV, de Paz JA, Gonzalez-Gallego J, Sanchez-Campos S, Cuevas MJ. Exercise training modulates the gut microbiota profile and impairs inflammatory signaling pathways in obese children. Exp. Mol. Med. 2020;52:1048-61. https://doi.org/10.1038/s12276-020-0459-0
  6. Bai J, Hu Y, Bruner D. Composition of gut microbiota and its association with body mass index and lifestyle factors in a cohort of 7-18 years old children from the American gut project. Pediatric Obes. 2019;14:e12480. https://doi.org/10.1111/ijpo.12480
  7. Moran-Ramos S, Lopez-Contreras BE, Villarruel-Vazquez R, Ocampo-Medina E, Macias-Kauffer L, Martinez-Medina JN, Villamil-Ramirez H, Leon-Mimila P, Del Rio-Navarro BE, Ibarra-Gonzalez I, Vela-Amieva M. Environmental and intrinsic factors shaping gut microbiota composition and diversity and its relation to metabolic health in children and early adolescents: a population-based study. Gut Microbes. 2020;11:900-17. https://doi.org/10.1080/19490976.2020.1712985
  8. Liang D, Leung RK-K, Guan W, Au WW. Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut Pathog. 2018;10:1-9. https://doi.org/10.1186/s13099-018-0228-y
  9. Koleva PT, Bridgman SL, Kozyrskyj AL. The infant gut microbiome: evidence for obesity risk and dietary intervention. Nutrients. 2015;7:2237-60. https://doi.org/10.3390/nu7042237
  10. Bernstein CN, Burchill C, Targownik LE, Singh H, Roos LL. Events within the first year of life, but not the neonatal period, affect risk for later development of inflammatory bowel diseases. Gastroenterology. 2019;156:2190-97. https://doi.org/10.1053/j.gastro.2019.02.004
  11. Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. 2017;81:e00036-17.
  12. Johnson CC, Ownby DR. The infant gut bacterial microbiota and risk of pediatric asthma and allergic diseases. Transl Res. 2017;179:60-70. https://doi.org/10.1016/j.trsl.2016.06.010
  13. Roth R, Lynch K, Hyoty H, Lonnrot M, Driscoll KA, Bennett Johnson S, Group TS. The association between stressful life events and respiratory infections during the first 4 years of life: the environmental determinants of diabetes in the young study. Stress and Health. 2019;35:289-303. https://doi.org/10.1002/smi.2861
  14. Sordillo JE, Korrick S, Laranjo N, Carey V, Weinstock GM, Gold DR, O'Connor G, Sandel M, Bacharier LB, Beigelman A. Association of the infant gut microbiome with early childhood neurodevelopmental outcomes: an ancillary study to the VDAART randomized clinical trial. JAMA Netw Open. 2019;2:e190905-e190905. https://doi.org/10.1001/jamanetworkopen.2019.0905
  15. Scott KP, Jean-Michel A, Midtvedt T, van Hemert S. Manipulating the gut microbiota to maintain health and treat disease. Microb Ecol Health Dis. 2015;26:25877.
  16. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, Lieber AD, Wu F, Perez-Perez GI, Chen Y, Schweizer W. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8:343-82.
  17. Yassour M, Vatanen T, Siljander H, Hamalainen AM, Harkonen T, Ryhanen SJ, Franzosa EA, Vlamakis H, Huttenhower C, Gevers D, Lander ES. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med. 2016;8:343-81.
  18. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC. Human gut microbiome viewed across age and geography. Nature. 2012;486:222-7. https://doi.org/10.1038/nature11053
  19. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6:237-65.
  20. Oh KJ, Lee SE, Jung H, Kim G, Romero R, Yoon BH. Detection of ureaplasmas by the polymerase chain reaction in the amniotic fluid of patients with cervical insufficiency. J Perinat Med. 2010;38:261-68. https://doi.org/10.1515/JPM.2010.040
  21. Younes JA, Lievens E, Hummelen R, van der Westen R, Reid G, Petrova MI. Women and their microbes: the unexpected friendship. Trends Microbiol. 2018;26:16-32. https://doi.org/10.1016/j.tim.2017.07.008
  22. Rackaityte E, Halkias J, Fukui EM, Mendoza VF, Hayzelden C, Crawford ED, Fujimura KE, Burt TD, Lynch SV. Viable bacterial colonization is highly limited in the human intestine in utero. Nat Med. 2020;26:599-607. https://doi.org/10.1038/s41591-020-0761-3
  23. Kim H, Sitarik AR, Woodcroft K, Johnson CC, Zoratti E. Birth mode, breastfeeding, pet exposure, and antibiotic use: associations with the gut microbiome and sensitization in children. Curr Allergy Asthma Rep. 2019;19:1-9. https://doi.org/10.1007/s11882-019-0837-7
  24. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220-30. https://doi.org/10.1038/nature11550
  25. Dicks L, Geldenhuys J, Mikkelsen L, Brandsborg E, Marcotte H. Our gut microbiota: a long walk to homeostasis. Benef Microbes. 2018;9:3-20. https://doi.org/10.3920/bm2017.0066
  26. Jenmalm MC. The mother-offspring dyad: microbial transmission, immune interactions and allergy development. J Intern Med. 2017;282:484-95. https://doi.org/10.1111/joim.12652
  27. Vuillermin PJ, Macia L, Nanan R, Tang ML, Collier F, Brix S. The maternal microbiome during pregnancy and allergic disease in the offspring. Paper presented at: Seminars in immunopathology 2017. 2017;39:669-75. https://doi.org/10.1007/s00281-017-0652-y
  28. Gschwendtner S, Kang H, Thiering E, Kublik S, Fosel B, Schulz H, Krauss-Etschmann S, Heinrich J, Scholer A, Schloter M, Standl M. Early life determinants induce sustainable changes in the gut microbiome of six-year-old children. Sci Rep. 2019;9:1-9. https://doi.org/10.1038/s41598-018-37186-2
  29. Nagpal R, Yamashiro Y. Gut microbiota composition in healthy Japanese infants and young adults born by C-section. Ann Nutr Metab. 2018;73:4-11. https://doi.org/10.1159/000490841
  30. Martin R, Makino H, Cetinyurek Yavuz A, Ben-Amor K, Roelofs M, Ishikawa E, Kubota H, Swinkels S, Sakai T, Oishi K, Kushiro A. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS One. 2016;11:e0158498. https://doi.org/10.1371/journal.pone.0158498
  31. Zhao X, Zhang Z, Hu B, Huang W, Yuan C, Zou L. Response of gut microbiota to metabolite changes induced by endurance exercise. Front microbiol. 2018;9:765. https://doi.org/10.3389/fmicb.2018.00765
  32. Barton W. The exercise and diet-microbiome paradigm: influences of physical activity and dietary nutrition on the human gut microbiome. University College Cork; 2018.
  33. Mailing LJ, Allen JM, Buford TW, Fields CJ, Woods JA. Exercise and the gut microbiome: a review of the evidence, potential mechanisms, and implications for human health. Exerc Sport Sci Rev. 2019;47:75-85. https://doi.org/10.1249/jes.0000000000000183
  34. Shahar RT, Koren O, Matarasso S, Shochat T, Magzal F, Agmon M. Attributes of physical activity and gut microbiome in adults: a systematic review. Int J Sports Med. 2020;41:801-14. https://doi.org/10.1055/a-1157-9257
  35. Lambert JE, Myslicki JP, Bomhof MR, Belke DD, Shearer J, Reimer RA. Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab. 2015;40:749-52. https://doi.org/10.1139/apnm-2014-0452
  36. Denou E, Marcinko K, Surette MG, Steinberg GR, Schertzer JD. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am J Physiol - Endocrinol Metab. 2016;310:E982-93. https://doi.org/10.1152/ajpendo.00537.2015
  37. Campbell SC, Wisniewski PJ, Noji M, McGuinness LR, Haggblom MM, Lightfoot SA, Joseph LB, Kerkhof LJ. The effect of diet and exercise on intestinal integrity and microbial diversity in mice. PLoS One. 2016;11:e0150502. https://doi.org/10.1371/journal.pone.0150502
  38. Lamoureux EV, Grandy SA, Langille MG. Moderate exercise has limited but distinguishable effects on the mouse microbiome. MSystems. 2017;2:e00006-17.
  39. Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J, Moulton L, Glawe A, Wang Y, Leone V, Antonopoulos DA. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One. 2014;9: e92193. https://doi.org/10.1371/journal.pone.0092193
  40. Bressa C, Bailen-Andrino M, Perez-Santiago J, Gonzalez-Soltero R, Perez M, Montalvo-Lominchar MG, Mate-Munoz JL, Dominguez R, Moreno D, Larrosa M. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS One. 2017;12:e0171352. https://doi.org/10.1371/journal.pone.0171352
  41. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L, Dumas ME. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65:426-36. https://doi.org/10.1136/gutjnl-2014-308778
  42. Barton W, Penney NC, Cronin O, Garcia-Perez I, Molloy MG, Holmes E, Shanahan F, Cotter PD, O'Sullivan O. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut. 2018;67:625-33. https://doi.org/10.1136/gutjnl-2016-313627
  43. Allen JM, Mailing LJ, Niemiro GM, Moore R, Cook MD, White BA, Holscher HD, Woods JA. Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc. 2018;50:747-57.
  44. Cronin O, Barton W, Skuse P, Penney NC, Garcia-Perez I, Murphy EF, Woods T, Nugent H, Fanning A, Melgar S, Falvey EC. A prospective metagenomic and metabolomic analysis of the impact of exercise and/or whey protein supplementation on the gut microbiome of sedentary adults. MSystems. 2018;3:e00044-18.
  45. Sitarik AR, Kerver JM, Havstad SL, Zoratti EM, Ownby DR, Wegienka G, Johnson CC, Cassidy-Bushrow AE. Infant feeding practices and subsequent dietary patterns of school-aged children in a US birth cohort. J Acad Nutr Diet. 2020:121; 1064-79.
  46. Williams LK, McPhee RA, Ownby DR, Peterson EL, James M, Zoratti EM, Johnson CC. Gene-environment interactions with CD14 C-260T and their relationship to total serum IgE levels in adults. J Allergy Clin Immunol. 2006;118:851-7. https://doi.org/10.1016/j.jaci.2006.07.007
  47. Wegienka G, Havstad S, Joseph CL, Zoratti E, Ownby D, Woodcroft K, Johnson CC. Racial disparities in allergic outcomes in African Americans emerge as early as age 2 years. Clin Exp Allergy. 2012;42:909-17. https://doi.org/10.1111/j.1365-2222.2011.03946.x
  48. Serdula MK, Ivery D, Coates RJ, Freedman DS, Williamson DF, Byers T. Do obese children become obese adults? A review of the literature. Prev Med. 1993;22:167-77. https://doi.org/10.1006/pmed.1993.1014
  49. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, Panzer AR, LaMere B, Rackaityte E, Lukacs NW. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22:1187-91. https://doi.org/10.1038/nm.4176
  50. DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK. Selective progressive response of soil microbial community to wild oat roots. ISME J. 2009;3:168-78. https://doi.org/10.1038/ismej.2008.103
  51. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621-4. https://doi.org/10.1038/ismej.2012.8
  52. Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957-63. https://doi.org/10.1093/bioinformatics/btr507
  53. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335-6. https://doi.org/10.1038/nmeth.f.303
  54. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460-1. https://doi.org/10.1093/bioinformatics/btq461
  55. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194-200. https://doi.org/10.1093/bioinformatics/btr381
  56. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996-8. https://doi.org/10.1038/nmeth.2604
  57. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069-72. https://doi.org/10.1128/AEM.03006-05
  58. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26:266-7. https://doi.org/10.1093/bioinformatics/btp636
  59. Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490. https://doi.org/10.1371/journal.pone.0009490
  60. NutritionQuest. Block kids physical activity screener. https://nutritionquest.com/company/our-research-questionnaires/. Accessed December 23, 2020.
  61. Hamilton CM, Strader LC, Pratt JG, Maiese D, Hendershot T, Kwok RK, Hammond JA, Huggins W, Jackman D, Pan H, Nettles DS. The PhenX Toolkit: get the most from your measures. Am J Epidemiol. 2011;174:253-60. https://doi.org/10.1093/aje/kwr193
  62. Kuczmarski RJ. 2000 CDC growth charts for the United States: methods and development. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics; 2002.
  63. Hunsberger M, O'Malley J, Block T, Norris JC. Relative validation of block kids food screener for dietary assessment in children and adolescents. Matern Child Nutr. 2015;11:260-70. https://doi.org/10.1111/j.1740-8709.2012.00446.x
  64. Petersen AC, Crockett L, Richards M, Boxer A. A self-report measure of pubertal status: reliability, validity, and initial norms. J Youth Adolesc. 1988;17:117-33. https://doi.org/10.1007/BF01537962
  65. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 2011;5:169-72. https://doi.org/10.1038/ismej.2010.133
  66. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Wagner H. Vegan: Community Ecology Package. R package version 2.5-6. 2019.
  67. McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217. https://doi.org/10.1371/journal.pone.0061217
  68. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1-21. https://doi.org/10.1186/gb-2014-15-1-r1
  69. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995:289-300.
  70. VanderWeele TJ. Principles of confounder selection. Eur J Epidemiol. 2019;34:211-9. https://doi.org/10.1007/s10654-019-00494-6
  71. Mancabelli L, Milani C, Lugli GA, Turroni F, Cocconi D, van Sinderen D, Ventura M. Identification of universal gut microbial biomarkers of common human intestinal diseases by meta-analysis. FEMS Microbiol. Ecol. 2017;93:fix153.
  72. Waters JL, Ley RE. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019;17:83. https://doi.org/10.1186/s12915-019-0699-4
  73. Mazier W, Le Corf K, Martinez C, Tudela H, Kissi D, Kropp C, Coubard C, Soto M, Elustondo F, Rawadi G. A new strain of Christensenella minuta as a potential biotherapy for obesity and associated metabolic diseases. Cells. 2021;10:823. https://doi.org/10.3390/cells10040823
  74. Li X, Li Z, He Y, Li P, Zhou H, Zeng N. Regional distribution of Christensenellaceae and its associations with metabolic syndrome based on a population-level analysis. PeerJ. 2020;8:e9591. https://doi.org/10.7717/peerj.9591
  75. Huang J, Liao J, Fang Y, Deng H, Yin H, Shen B, Hu M. Six-week exercise training with dietary restriction improves central hemodynamics associated with altered gut microbiota in adolescents with obesity. Front Endocrinol. 2020;11.
  76. Van Hul M, Le Roy T, Prifti E, Dao MC, Paquot A, Zucker J-D, Delzenne NM, Muccioli G, Clement K, Cani PD. From correlation to causality: the case of Subdoligranulum. Gut Microbes. 2020;12:1-13.
  77. Palmas V, Pisanu S, Madau V, Casula E, Deledda A, Cusano R, Uva P, Vascellari S, Loviselli A, Manzin A, Velluzzi F. Gut microbiota markers associated with obesity and overweight in Italian adults. Sci Rep. 2021;11:1-14. https://doi.org/10.1038/s41598-020-79139-8
  78. Tung Y-T, Hsu Y-J, Liao C-C, Ho S-T, Huang C-C, Huang W-C. Physiological and biochemical effects of intrinsically high and low exercise capacities through multiomics approaches. Front Physiol. 2019;10:1201. https://doi.org/10.3389/fphys.2019.01201
  79. Matthies C, Evers S, Ludwig W, Schink B. Anaerovorax odorimutans gen. nov., sp. nov., a putrescine-fermenting, strictly anaerobic bacterium. Int J Syst Evol Microbiol. 2000;50:1591-4. https://doi.org/10.1099/00207713-50-4-1591
  80. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58:1509-17. https://doi.org/10.2337/db08-1637
  81. Shankar V, Gouda M, Moncivaiz J, Gordon A, Reo NV, Hussein L, Paliy O. Differences in gut metabolites and microbial composition and functions between Egyptian and US children are consistent with their diets. Msystems. 2017;2.
  82. Carbajo-Pescador S, Porras D, Garcia-Mediavilla MV, MartinezFlorez S, Juarez-Fernandez M, Cuevas MJ, Mauriz JL, Gonzalez-Gallego J, Nistal E, Sanchez-Campos S. Beneficial effects of exercise on gut microbiota functionality and barrier integrity, and gut-liver crosstalk in an in vivo model of early obesity and non-alcoholic fatty liver disease. DMM. 2019;12:dmm039206.
  83. Motiani KK, Collado MC, Eskelinen JJ, Virtanen KA, Loyttyniemi E, Salminen S, Nuutila P, Kalliokoski KK, Hannukainen JC. Exercise training modulates gut microbiota profile and improves endotoxemia. Med Sci Sports Exerc. 2020;52:94. https://doi.org/10.1249/mss.0000000000002112
  84. Gerard M, Fossa A, Folcarelli PH, Walker J, Bell SK. What patients value about reading visit notes: a qualitative inquiry of patient experiences with their health information. J Med Internet Res. 2017;19:e237. https://doi.org/10.2196/jmir.7212
  85. Yeager A. Exercise Changes Our Gut Microbes, But How Isn't Yet Clear. https://www.the-scientist.com/news-opinion/exercise-changes-our-gut-microbes--but-how-isnt-yet-clear-66281. Published 2019. Accessed June 28 2020.