• Title/Summary/Keyword: Gastric cancer cell line

Search Result 111, Processing Time 0.024 seconds

Exogenous Morphine Inhibits Human Gastric Cancer MGC-803 Cell Growth by Cell Cycle Arrest and Apoptosis Induction

  • Qin, Yi;Chen, Jing;Li, Li;Liao, Chun-Jie;Liang, Yu-Bing;Guan, En-Jian;Xie, Yu-Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1377-1382
    • /
    • 2012
  • Morphine is not only an analgesic treating pain for patients with cancer but also a potential anticancer drug inhibiting tumor growth and proliferation. To gain better insight into the involvement of morphine in the biological characteristics of gastric cancer, we investigated effects on progression of gastric carcinoma cells and the expression of some apoptosis-related genes including caspase-9, caspase-3, survivin and NF-${\kappa}B$ using the MGC-803 human gastric cancer cell line. The viability of cells was assessed by MTT assay, proliferation by colony formation assay, cell cycle progression and apoptosis by flow cytometry and ultrastructural alteration by transmission electron microscopy. The influences of morphine on caspase-9, caspase-3, survivin and NF-${\kappa}B$ were evaluated by semi-quantitative RT-PCR and Western blot. Our data showed that morphine could significantly inhibit cell growth and proliferation and cause cell cycle arrest in the G2/M phase. MGC-803 cells which were incubated with morphine also had a higher apoptotic rate than control cells. Morphine also led to morphological changes of gastric cancer cells. The mechanism of morphine inhibiting gastric cancer progression in vitro might be associated with activation of caspase-9 and caspase-3 and inhibition of survivin and NF-${\kappa}B$.

Overexpression of Cyclin L2 Inhibits Growth and Enhances Chemosensitivity in Human Gastric Cancer Cells

  • Li, Hong-Li;Huang, Ding-Zhi;Deng, Ting;Zhou, Li-Kun;Wang, Xia;Bai, Ming;Ba, Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1425-1430
    • /
    • 2012
  • Cyclin L2 is a novel member of the cyclin family, recently implicated in the regulation of cell cycle progression and/or transcriptional regulation. The present study was undertaken to investigate the effects of overexpression on tumor cell growth and chemosensitivity in human gastric cells in vitro. Cyclin L2 was transfected into human gastric cancer cell line BCG823 and expressed with a mammalian expression vector pcDNA3.1. The effects and mechanisms of cyclin L2 on cell growth, cell cycling and apoptosis were studied. Compared to control vectors, overexpression of cyclin L2 inhibited the growth of BCG823 cells and enhance their chemosensitivity to fluorouracil, docetaxel and cisplatin. The anti-proliferative effects of cyclin L2 could be due to G0/G1 arrest and apoptosis. Cyclin L2 induced G0/G1 arrest and apoptosis involved upregulation of caspase-3 and down regulation Bcl-2 and survivin. The results indicated that overexpression of cyclin L2 protein may promote efficient growth inhibition and enhance chemosensitivity to chemotherapeutic agents in human gastric cancer cells by inducing G0/G1 cell cycle arrest and apoptosis.

Roles of Dopamine in Proliferation of Gastric-Cancer Cells (도파민의 위암세포증식에서의 역할)

  • Jeong, Hee-Jun;Park, Ki-Ho;Chae, Hyun-Dong
    • Journal of Gastric Cancer
    • /
    • v.6 no.3
    • /
    • pp.132-138
    • /
    • 2006
  • Purpose: Dopamine is a neurotransmitter, but in the GIT, the roles of dopamine are a regulator of epithelial cell proliferation, an endogenous protective factor, and a regulator of stomach cancer cell proliferation. By using two different gastric-cancer cell lines, we assessed the effects of dopamine and dopamine receptors on the proliferation of human gastric-cancer cells. Materials and Methods: To assess the effects of dopamine and dopamine receptors on the proliferation of human gastric-cancer cells, we investigated cell proliferation and the expression of D1, D2L, and D2S receptor in two gastric-cancer cell lines, SNU 601 and KCU-C2. The effects of dopamine and dopamine receptors on the level of the cell proliferation were determined by staining with an A/H/E (acridine orange, hoechst and ethidium bromide) mixture. Results: After dopamine treatment, the cell viability was significantly decreased in SNU 601 cells (P<0.05) where the D2L receptor was absent, but not in KCU-C2 cells. After treatment with raclopride, a D2 receptor antagonist, dopamine-dose-dependent inhibition of cell proliferation was observed in SNU 601 cells (P<0.05). After treatment with SCH 23390, a D1 receptor antagonist, dopamine significantly increased ceil proliferation in KCU-C2 cells (P<0.05), but inhibited ceil proliferation in SNU 601 cells (no D2L receptor). Conclusion: The dopamine signal via the D1 or the D2S receptor inhibited proliferation of gastric-cancer cells, but that via the D2L receptor increased proliferation. These results suggest that the regulatory effects of dopamine in the gastric-cancer cell proliferation may be controlled by using dopamine receptors.

  • PDF

Effect of MUC1 siRNA on Drug Resistance of Gastric Cancer Cells to Trastuzumab

  • Deng, Min;Jing, Da-Dao;Meng, Xiang-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.127-131
    • /
    • 2013
  • Trastuzumab is the first molecular targeting drug to increase the overall survival rate in advanced gastric cancer. However, it has also been found that a high intrinsic or primary trastuzumab resistance exists in some proportion of gastric cancer patients. In order to explore the mechanism of resistance to trastuzumab, firstly we investigated the expression of MUC1 (membrane-type mucin 1) in gastric cancer cells and its relationship with drug-resistance. Then using gene-silencing, we transfected a siRNA of MUC1 into drug-resistant cells. The results showed the MKN45 gastric cell line to be resistant to trastuzumab, mRNA and protein expression of MUC1 being significantly upregulated. After transfection of MUC1 siRNA, protein expression of MUC1 in MKN45cells was significantly reduced. Compared with the junk transfection and blank control groups, the sensitivity to trastuzumab under MUC1 siRNA conditions was significantly increased. These results imply that HER2-positive gastric cancer cell MKN45 is resistant to trastuzumab and this resistance can be cancelled by silencing expression of the MUC1 gene.

Connexin32 inhibits gastric carcinogenesis through cell cycle arrest and altered expression of p21Cip1 and p27Kip1

  • Jee, Hyang;Lee, Su-Hyung;Park, Jun-Won;Lee, Bo-Ram;Nam, Ki-Taek;Kim, Dae-Yong
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • Gap junctions and their structural proteins, connexins (Cxs), have been implicated in carcinogenesis. To explore the involvement of Cx32 in gastric carcinogenesis, immunochemical analysis of Cx32 and proliferation marker Ki67 using tissue-microarrayed human gastric cancer and normal tissues was performed. In addition, after Cx32 overexpression in the human gastric cancer cell line AGS, cell proliferation, cell cycle analyses, and $p21^{Cip1}$ and $p27^{Kip1}$ expression levels were examined by bromodeoxyuridine assay, flow cytometry, real-time RT-PCR, and western blotting. Immunohistochemical study noted a strong inverse correlation between Cx32 and Ki67 expression pattern as well as their location. In vitro, overexpression of Cx32 in AGS cells inhibited cell proliferation significantly. $G^1$ arrest, up-regulation of cell cycle-regulatory proteins $p21^{Cip1}$ and $p27^{Kip1}$ was also found at both mRNA and protein levels. Taken together, Cx32 plays some roles in gastric cancer development by inhibiting gastric cancer cell proliferation through cell cycle arrest and cell cycle regulatory proteins.

Emerging Targets for Systemic Treatment of Gastric Cancer: HER2 and Beyond

  • In-Ho Kim
    • Journal of Gastric Cancer
    • /
    • v.24 no.1
    • /
    • pp.29-56
    • /
    • 2024
  • In recent years, remarkable progress has been made in the molecular profiling of gastric cancer. This progress has led to the development of various molecular classifications to uncover subtype-specific dependencies that can be targeted for therapeutic interventions. Human epidermal growth factor receptor 2 (HER2) is a crucial biomarker for advanced gastric cancer. The recent promising results of novel approaches, including combination therapies or newer potent agents such as antibody-drug conjugates, have once again brought attention to anti-HER2 targeted treatments. In HER2-negative diseases, the combination of cytotoxic chemotherapy and programmed cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitors has become the established standard of care in first-line settings. In the context of gastric cancer, potential biomarkers such as PD-L1 expression, Epstein-Barr virus, microsatellite instability, and tumor mutational burden are being considered for immunotherapy. Recently, promising results have been reported in studies on anti-Claudin18.2 and fibroblast growth factor receptor 2 treatments. Currently, many ongoing trials are aimed at identifying potential targets using novel approaches. Further investigations will be conducted to enhance the progress of these therapies, addressing challenges such as primary and acquired resistance, tumor heterogeneity, and clonal evolution. We believe that these efforts will improve patient prognoses. Herein, we discuss the current evidence of potential targets for systemic treatment, clinical considerations, and future perspectives.

Alterations in Mitochondrial DNA Copy Numbers and Mitochondrial Oxidative Phosphorylation (OXPHOS) Protein Levels in Gastric Cancer Tissues and Cell Lines (위암 조직과 세포주에서 mDNA와 OXPHOS 단백질 분석)

  • Siregar, Adrian;Hah, Young-Sool;Moon, Dong Kyu;Woo, Dong Kyun
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1057-1065
    • /
    • 2021
  • Alterations in mitochondrial DNA (mtDNA) copy numbers have been reported in patients with stomach cancer and suggested to play a role in gastric carcinogenesis or gastric cancer progression. However, changes in the levels of mitochondrial proteins or mtDNA-encoded oxidative phosphorylation (OXPHOS) proteins in gastric cancer remain unclear. In this study, we investigated mtDNA contents, mitochondrial protein levels, and mtDNA-encoded OXPHOS protein levels in gastric cancer tissues and cell lines. We correlated mtDNA copy numbers with clinicopathologic features of the gastric cancer samples used in this study and used quantitative PCR to analyze the mtDNA copy numbers of the gastric cancer tissues and cell lines. Western blot analysis was used for assessing the amounts of mitochondrial proteins and mtDNA-encoded OXPHOS proteins. Among the 27 gastric cancer samples, 22 showed a reduction in mtDNA copy numbers. The mtDNA content was increased in the other five samples relative to that in normal matched gastric tissues. Mitochondrial protein and OXPHOS protein levels were reduced in some gastric cancer tissues. However, mitochondrial protein and OXPHOS protein levels in gastric cancer cell lines were not always in line with their mtDNA contents. The mtDNA copy numbers were reduced in five gastric cancer cell lines tested in this study. In summary, this study reports a common reduction in mtDNA contents in gastric carcinoma tissues and cell lines, pointing to the possible involvement of mtDNA content alterations in tumorigenesis of the stomach.

MiR-421 Regulates Apoptosis of BGC-823 Gastric Cancer Cells by Targeting Caspase-3

  • Wu, Jian-Hong;Yao, Yong-Liang;Gu, Tao;Wang, Ze-You;Pu, Xiong-Yong;Sun, Wang-Wei;Zhang, Xian;Jiang, Yi-Biao;Wang, Jian-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5463-5468
    • /
    • 2014
  • MicroRNAs might act as oncogenes or tumor suppressors in cancer. Recent studies have shown that miR-421 is up-regulated in human gastric cancer. Here, we found that miR-421 was over-expressed in gastric cancer tissues and cell lines. Bioinformatics analysis predicted that the caspase-3 gene was a target of miR-421. Caspase-3 was negatively regulated by miR-421 at the post-transcriptional level. Bax and Bcl-2 were also regulated by miR-421. Moreover, tumor necrosis factor receptor-I and -II, death receptors in the apoptosis pathway, were up-regulated by miR-421. The over-expression of miR-421 promoted gastric cancer cell growth and inhibited apoptosis of the BGC-823 gastric cancer cell line. These observations indicate that miR-421 acts as a tumor promoter by targeting the caspase-3 gene and preventing apoptosis of gastric cancer cells through inhibition of caspase-3 expression. These findings contribute to our understanding of the functions of miR-421 in gastric cancer.

Effects of Aloe-emodin and Emodin on Proliferation of the MKN45 Human Gastric Cancer Cell Line

  • Chihara, Takeshi;Shimpo, Kan;Beppu, Hidehiko;Yamamoto, Naoki;Kaneko, Takaaki;Wakamatsu, Kazumasa;Sonoda, Shigeru
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3887-3891
    • /
    • 2015
  • Aloe-emodin (1, 8-dihydroxy-3-hydroxyl-methylanthraquinone; AE) and emodin (1,3,8-trihydroxy-6-methylanthraquinone; EM) are anthraquinone derivatives that have been detected in some medical plants and share similar anthraquinone structures. AE and EM have been shown to exhibit anticancer activities in various cancer cell lines; however, the inhibitory effects of these derivatives on the growth of cancer cells were previously reported to be different. Gastric cancer is the second most common cause of cancer cell death worldwide. In the present study, we examined the inhibitory effects of 0.05 mM AE and 0.05 mM EM on the proliferation of the MKN45 human gastric cancer cell line. The proliferation of MKN45 cells was significantly inhibited in AE- and EM-treated groups 24 h and 48 h after treatment. Furthermore, the inhibitory effects of EM were stronger than those of AE. The cell cycle of MKN45 cells were arrested in G0/G1 phase or G0/G1 and G2/M phases by AE and EM, respectively. However, an analysis of intracellular polyamine levels and DNA fragmentation revealed that the mechanisms underlying cell death following cell arrest induced by AE and EM differed.

Induction of Apoptosis by Eugenol and Capsaicin in Human Gastric Cancer AGS Cells - Elucidating the Role of p53

  • Sarkar, Arnab;Bhattacharjee, Shamee;Mandal, Deba Prasad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6753-6759
    • /
    • 2015
  • Background: Loss of function of the p53 gene is implicated in defective apoptotic responses of tumors to chemotherapy. Although the pro-apoptotic roles of eugenol and capsaicin have been amply reported, their dependence on p53 for apoptosis induction in gastric cancer cells is not well elucidated. The aim of the study was to elucidate the role of p53 in the induction of apoptosis by eugenol and capsaicin in a human gastric cancer cell line, AGS. Materials and Methods: AGS cells were incubated with or without various concentrations of capsaicin and eugenol for 12 hrs, in the presence and absence of p53 siRNA. Cell cycling, annexin V and expression of apoptosis related proteins Bax, Bcl-2 ratio, p21, cyt c-caspase-9 association, caspase-3 and caspase-8 were studied. Results: In the presence of p53, capsaicin was a more potent pro-apoptotic agent than eugenol. However, silencing of p53 significantly abrogated apoptosis induced by capsaicin but not that by eugenol. Western blot analysis of pro-apoptotic markers revealed that as opposed to capsaicin, eugenol could induce caspase-8 and caspase-3 even in the absence of p53. Conclusions: Unlike capsaicin, eugenol could induce apoptosis both in presence and absence of functional p53. Agents which can induce apoptosis irrespective of the cellular p53 status have immense scope for development as potential anticancer agents.