• 제목/요약/키워드: Gastric cancer cell growth

검색결과 178건 처리시간 0.027초

Expression and Underlying Roles of IGFBP-3 in Paclitaxel-Treated Gastric Cancer Sgc-7901 Cells

  • Huang, Gang;Dang, Zhong-Feng;Dang, Ya-Mei;Cai, Wei;Li, Yuan;Chen, Yi-Rong;Xie, Xiao-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권14호
    • /
    • pp.5741-5745
    • /
    • 2014
  • Purpose: To study the expression of insulin-like growth factor binding proteins (IGFBPs) in paclitaxel-treated gastric cancer SGC-7901 cells, and to further investigate underlying mechanisms. Materials and Methods: Real time PCR and Western blot assays were applied to detect the mRNA and protein expression of IGFBP-2, -3 and -5 after paclitaxel (10 nM) treatment of SGC-7901 cells. In addition IGFBP-3 expression was silenced by RNA interference to determine effects. Cell viability was determined by MTT assay. Cell cycling and apoptosis were assessed by flow cytometry. Results: Compared to the control group, only IGFBP-3 expression was elevated significantly after paclitaxel (10 nM) treatment (p<0.05). Paclitaxel treatment caused cell cycle arrest and apoptosis via downregulating Bcl-2 expression. However, the effect could be abrogated by IGFBP-3 silencing. Conclusions: IGFBP-3 exhibits anti-apoptotic effects on paclitaxel-treated SGC-7901 cells via elevating Bcl-2 expression.

된장의 in vitro Sulforhodamine B (SRB) Assay에 의한 암세포 증식 억제 효과 (Anticancer Effect of Doenjang in in vitro Sulforhodamine B (SRB) Assay)

  • 이숙희;임선영;박건영
    • 한국식품영양과학회지
    • /
    • 제28권1호
    • /
    • pp.240-245
    • /
    • 1999
  • Growth inhibitory effect of doenjang(Korean soypaste) methanol extracts in SRB assay using AGS human gastric adenocarcinoma cell, Hep 3B human hepatocellular carcinoma cell and HT 29 human colon cancer cell was studied. The treatment of doenjang methanol extracts(2mg/assay) to the AGS, Hep 3B and HT 29 cancer cells inhibited the growth of the cancer cells by 55%, 60%, and 71%, respectively. Doenjang methanol extracts exhibited the highest inhibitory effect among other soybean fermented foods and original materials in the SRB assay. In addition, to separate active compounds of doenjang methanol extracts, we fractionated the doenjang with hexane, methanol, dichloromethane, ethylacetate and butanol. Growth inhibitory effect on the AGS, Hep 3B, HT 29 and MG 63 cancer cells was the highest in the fractions of dichloromethane and ethylacetate among other solvent fractions of the doenjang. These results showed that some compounds contained in the fractions of dichloromethane and ethylacetate might play a role on the anticanceric effect of doenjang.

  • PDF

위샘종과 위샘암종에서의 세포자멸사와 세포증식 (Apoptosis and Cell Proliferation in Gastric Adenoma and Adenocarcinoma)

  • 이동수;강상범;이승우;남순우;유영경;한석원
    • Journal of Gastric Cancer
    • /
    • 제6권2호
    • /
    • pp.91-96
    • /
    • 2006
  • 목적: 일반적으로 DNA가 손상된 세포들은 사멸되거나 적절히 손상된 부위를 복구하여 항상성을 유지하거나, 손상된 DNA를 가지고 계속 증식하여 결국 암으로 진행한다. 그러므로 세포자멸사와 세포증식의 균형의 변화는 조직 항상성 및 암 발생의 중요한 조절기전이다. 이에 본 연구자들은 위샘종 또는 위샘암종 조직을 대상으로 세포 사멸 및 세포증식의 정도를 보고자 하였다. 대상 및 방법: 내시경적으로 절제된 위샘종 41예, 외과 수술로 절제된 위샘암종 100예를 대상으로 면역조직화학적 검사를 시행하여 Ki-67 labelling 지수를 구하고, TUNEL 방법을 이용하여 세포자멸사 지수를 구하여 위샘종에서의 이형성 정도에 따른 발현도의 차이 및 위샘암종에서의 조직분류 및 병기에 따른 발현도의 차이를 관찰하였다. 결과: Ki-67 labelling 지수는 위샘종 $51.90{\pm}1.45$, 위샘암종 $55.33{\pm}0.94$로서 위샘암종에서 의의 있게 높았다(P<0.05). 세포자멸사 지수는 위샘종 $53.27{\pm}2.67$, 위샘암종 $42.41{\pm}1.32$로서 위샘종에서 의의 있게 높았다(P<0.05). 위샘종에서 이형성에 따른 Ki-67 labelling 지수 및 세포자멸사 지수는 차이가 없었다. 위샘암종에서 Ki-67 labelling 지수 및 세포자멸사 지수는 Lauren 분류법에 의한 장형과 미만형, 조기 위암과 진행성 위암, 림프절 전이 유무, TNM 분류에 따른 각 군 간의 통계학적 차이는 보이지 않았다. 결론: 샘암종에서의 세포자멸사 지수와 Ki-67 labelling 지수에 대한 연구에서 위샘종은 위샘암종보다 좀 더 정적인 결과를 보이고, 위암발생에서는 세포증식이 중요한 역할을 하나 이 두 지수가 위암의 조직학적 분류 및 병기에 따른 예후와는 관련이 없었다.

  • PDF

Antimutagenic and Cancer Cell Growth Inhibitory Effects of Seaweeds

  • Cho, Eun-Ju;Rhee, Sook-Hee;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • 제2권4호
    • /
    • pp.348-353
    • /
    • 1997
  • The antimutagenic and cancer cell growth inhibitory effects of methanol extracts from 9 kinds of seaweed were studied in the Ames assay and cell culture systems, respectively. The methanol extracts from the seaweeds of sea lettuce, chlorella, sea tangle, sea mustard, sporophyll of sea mustard, fusiforme, seaweed papulosa, purple laver and ceylon moss showed antimutagenicities against aflatoxin B₁(AFB₁) and N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) in the Salmonella typhimurium TA100. These extracts revealed relatively higher antimutagenicity against AFB₁(indirect mutagen) than MNNG(direct mutagen). Sporophyll of sea mustard and seaweed papulosa exhibited strong antimutagenic activity against AFB₁, and sporophyll of sea mustard, sea tangle and ceylon moss also reduced the mutagenicity induced by MNNG. The sporophyll fo sea mustard exerted the highest antimutagenic activity among the samples treated. The methanol extracts from 9 kinds of seaweed inhibited the growth of two cancer cell lines, AGS human gastric adenocarcinoma cells and HT-29 human colon carcinoma cells. Sea tangle, sea mustard and sporophyll of sea mustard inhibited the growth of cancer cells significantly. These results suggest that various seaweeds show not only antimutagenic activity but also growth inhibitory effect of some cancer cells.

  • PDF

Hsa-miR-181a-5p Expression and Effects on Cell Proliferation in Gastric Cancer

  • Chen, Gang;Shen, Zhi-Li;Wang, Ling;Lv, Chun-Ye;Huang, Xin-En;Zhou, Rong-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3871-3875
    • /
    • 2013
  • Purpose: MicroRNAs (miRNAs) are small endogenous, non-coding, single-stranded RNAs (approximately 22 nt). Accumulating evidence has shown that aberrant miRNA expression is pronounced and correlated with gastric cancer genesis and progression. Materials and Methods: Expression levels of miR-181a-5p in GC tissues and cell lines were assessed by qRT-PCR and tested for correlation with clinical features. In addition, effects of miR-181a-5p on GC cell growth were investigated. Results: Our findings indicate that miR-181a-5p is upregulated in GC, in correlation with lymph node invasion, nerve invasion and vascular invasion (P<0.05). Enforced expression of miR-181a -5p promoted cell proliferation ability. Conclusions: This study suggested that increased miR-181a-5p is related to GC progression. MiR-181a-5p may represent a potential therapeutic target for GC.

인체 위암세포에서 고삼의 세포사멸효과 (Effects of Apoptosis of Sophorae Radix on Human Gastric Adenocarcinoma cells)

  • 임보라;이희정;김민철;김형우;김병주
    • 한국한의학연구원논문집
    • /
    • 제18권1호
    • /
    • pp.85-92
    • /
    • 2012
  • Objective : The purpose of this study was to investigate the anti-cancer effects of Sophorae Radix and the effects of 5-Fluorouracil (5-FU) in human gastric adenocarcinoma cells (AGS). Method : We used human gastric adenocarcinoma cell line, AGS cells. We examined cell death by MTT assay and caspase 3 assay with Sophorae Radix. To examine the inhibitory effects of Sophorae Radix, cell cycle (sub G1) analysis was done the AGS cells after three days with Sophorae Radix. The reversibility of Sophorae Radix was examined on one day to five days treatment with 100 ${\mu}g/ml$ Sophorae Radix. Result : Sophorae Radix inhibited the growth of AGS cells in a dose-dependent fashion. Also we showed that Sophorae Radix induced apoptosis in AGS cells by MTT assay, caspase 3 assay and sub-G1 analysis. Sophorae Radix combined with 5-FU markedly inhibited the growth of AGS cells compared to Sophorae Radix or 5-FU alone. After 3 days treatment of AGS cells with Sophorae Radix, the fraction of cells in sub-G1 phase was much higher than that of the control group. Conclusion : Our findings provide insight into unraveling the effects of Sophorae Radix in human gastric adenocarcinoma cells and developing therapeutic agents against gastric cancer.

Identification of a Novel PGE2 Regulated Gene in SNU1 Gastric Cancer Cell

  • Park, Min-Seon;Kim, Hong-Tae;Min, Byung-Re;Kimm, Ku-Chan;Nam, Myeong-Jin
    • BMB Reports
    • /
    • 제33권2호
    • /
    • pp.184-187
    • /
    • 2000
  • Prostaglandin $E_2$ ($PGE_2$) plays an important role in the regulation of various gastric functions, and the growth-inhibitory activities on tumor cells are studied in vitro and in vivo. Although the mechanisms have attracted many researchers in the past decade, the molecular mechanisms of cell cycle arrest, or induction of apoptosis by $PGE_2$, is unclear. We investigated the effects of $PGE_2$ on the growth of the human gastric carcinoma cell line SNU1 and genes that are regulated by $PGE_2$ and isolated them using differential display RT-PCR (DD RT-PCR). FACS analysis suggested that SNU1 cells were arrested at the G1 phase by $PGE_2$ treatment. This growth inhibitory effect was in a time- and dose-dependent manner. Treatment of SNU1 cells with $10\;{\mu}g/ml$ $PGE_2$, followed by DD RT-PCR analysis, revealed differently expressed bands patterns from the control. Among the differently expressed clones, we found an unidentified cDNA clone (HGP-27) overexpressed in $PGE_2$-treated cells. The full-length cDNA of HGP-27 was isolated using RACE, which consisted of a 30-nt 5'-noncoding region, a 891-nt ORF encoding the 296 amino acid protein, and a 738-nt 3'-noncoding region including a poly(a) signal. This gene was localized on the short arm of chromosome number 11. Using the Motif Finder program, a myb-DNA binding repeat signature was detected on the ORF region. The COOH-terminal half was shown to have similarity with the $NH_3$-terminal domain of thioredoxin (Trx). This relation between HGP-27 and Trx implied a potential role for HGP-27 in modulating the DNA binding function of a transcription factor, myb.

  • PDF

Extracts of Opuntia humifusa Fruits Inhibit the Growth of AGS Human Gastric Adenocarcinoma Cells

  • Hahm, Sahng-Wook;Park, Jieun;Park, Kun-Young;Son, Yong-Suk;Han, Hyungchul
    • Preventive Nutrition and Food Science
    • /
    • 제21권1호
    • /
    • pp.31-37
    • /
    • 2016
  • Opuntia humifusa (OHF) has been used as a nutraceutical source for the prevention of chronic diseases. In the present study, the inhibitory effects of ethyl acetate extracts of OHF on the proliferation of AGS human gastric cancer cells and the mode of action were investigated. To elucidate the antiproliferative mechanisms of OHF in cancer cells, the expression of genes related to apoptosis and cell cycle arrest were determined with real-time PCR and western blot. The cytotoxic effect of OHF on AGS cells was observed in a dose-dependent manner. Exposure to OHF ($100{\mu}g/mL$) significantly induced (P<0.05) the G1 phase cell cycle arrest. Additionally, the apoptotic cell population was greater (P<0.05) in OHF ($200{\mu}g/mL$) treated AGS cells when compared to the control. The expression of genes associated with cell cycle progression (Cdk4, Cdk2, and cyclin E) was significantly downregulated (P<0.05) by the OHF treatment. Moreover, the expression of Bax and caspase-3 in OHF treated cells was higher (P<0.05) than in the control. These findings suggest that OHF induces the G1 phase cell cycle arrest and activation of mitochondria-mediated apoptosis pathway in AGS human gastric cancer cells.

RASAL1 Attenuates Gastric Carcinogenesis in Nude Mice by Blocking RAS/ERK Signaling

  • Chen, Hong;Zhao, Ji-Yi;Qian, Xu-Chen;Cheng, Zheng-Yuan;Liu, Yang;Wang, Zhi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권3호
    • /
    • pp.1077-1082
    • /
    • 2015
  • Recent studies have suggested that the RAS protein activator like-1 (RASAL1) functions as a tumor suppressor in vitro and may play an important role in the development of gastric cancer. However, whether or not RASAL1 suppresses tumor growth in vivo remains to be determined. In the present study, we investigated the role of RASAL1 in gastric carcinogenesis using an in vivo xenograft model. A lentiviral RASAL1 expression vector was constructed and utilized to transfect the human poorly differentiated gastric adenocarcinoma cell line, BGC-823. RASAL1 expression levels were verified by quantitative real-time RT-PCR and Western blotting analysis. Then, we established the nude mice xenograft model using BGC-823 cells either over-expressing RASAL1 or normal. After three weeks, the results showed that the over-expression of RASAL1 led to a significant reduction in both tumor volume and weight compared with the other two control groups. Furthermore, in xenograft tissues the increased expression of RASAL1 in BGC-823 cells caused decreased expression of p-ERK1/2, a downstream moleculein the RAS/RAF/MEK/ERK signal pathway. These findings demonstrated that the over-expression of RASAL1 could inhibit the growth of gastric cancer by inactivation of the RAS/RAF/MEK/ERK pathway in vivo. This study indicates that RASAL1 may attenuate gastric carcinogenesis.

18α-Glycyrrhetinic acid의 위암 세포 사멸 효과에 관한 연구 (18α-Glycyrrhetinic acid induces apoptosis of AGS human gastric cancer cells)

  • 김정남;김병주
    • 대한한의학방제학회지
    • /
    • 제28권1호
    • /
    • pp.63-70
    • /
    • 2020
  • Objectives : The purpose of this study was to investigate the anti-cancer effects of 18α-Glycyrrhetinic acid (18α-GA), a hydrolyzed metabolite of glycyrrhizin, in AGS human gastric adenocarcinoma cells. Methods : We used human gastric adenocarcinoma cell line, AGS cells. We examined cell death by MTT assay and caspase 3 and 9 assay with 18α-GA. To examine the inhibitory effects of 18α-GA, sub-G1 analysis was done the AGS cells after 24 hours with 18α-GA. Also, to investigate the inhibitory mechanisms of 18α-GA, mitogen-activated protein kinase pathways and reactive oxygen species (ROS) generation were examined. Results : 1. 18α-GA inhibited the growth of AGS cells in a dose-dependent fashion. 2. Sub-G1 fractions were significantly and dose-dependently increased by 18α-GA. 3. 18α-GA increased the caspase 3 and 9 activities in AGS cells. 4. 18α-GA inhibited proliferation of AGS cells via the modulation of c‑Jun N‑terminal kinase (JNK) signaling pathways, which results in the induction of apoptosis. 5. 18α-GA enhanced ROS accumulation in AGS cells. Conclusions : Our findings provide insight into unraveling the effects of 18α-GA in human gastric adenocarcinoma cells and developing therapeutic agents against gastric cancer.