• 제목/요약/키워드: Gasoline Engine

검색결과 751건 처리시간 0.028초

휘발유 승용자동차의 엔진 배기량이 실도로 주행시 이산화탄소 및 질소산화물 배출에 미치는 영향 (Effects on CO2 and NOx Emissions at Real Driving Condition in the Passenger Car using Gasoline Fuel with Various Engine Displacements)

  • 이종태;김형준;임윤성;윤창완;길지훈;홍유덕
    • 한국분무공학회지
    • /
    • 제23권3호
    • /
    • pp.122-127
    • /
    • 2018
  • Recently, registrated passenger cars have increased and were close about seventy million at the end 2017 year in Korea. Among the passenger car using gasoline fuel make up forty six percentage of total registrated vehicles. In this study, investigation on real driving emission characteristics in the passenger car using gasoline fuel with various engine displacements were carried out. The real driving emission characteristics were measured and analyzed by using PEMS (Portable Emission Measurement System). PEMS was composed of gas analyzer, emission flow meter and sample conditioning system et al. Also, test six vehicles were selected to the gasoline passenger car with engine displacement from 1.6L to 3.7L. Two test routes with engine start of cold and hot conditions were applied to analyze the emission characteristics of RDE, respectively. The results show that the $CO_2$ emission have a increasing trend as the engine displacement and vehicle weight. Also, it is guessed that the $CO_2$ emission and vehicle weight were more correlated than the engine displacements. On the other hand, NOx emissions of RDE have not increasing or decreasing tendency according engine displacements or vehicle weight because the activation of three-way catalyst in the gasoline vehicles.

Analysis of Compression Ignition Combustion in a Schnurle-Type Gasoline Engine - Comparison of performance between direct injection and port injection systems -

  • Kim, Seok-Woo;Moriyoshi, Yasuo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1451-1460
    • /
    • 2004
  • A two-stroke Schnurle-type gasoline engine was modified to enable compression-ignition in both the port fuel injection and the in-cylinder direct injection. Using the engine, examinations of compression-ignition operation and engine performance tests were carried out. The amount of the residual gas and the in-cylinder mixture conditions were controlled by varying the valve angle rate of the exhaust valve (VAR) and the injection timing for direct injection conditions. It was found that the direct injection system is superior to the port injection system in terms of exhaust gas emissions and thermal efficiency, and that almost the same operational region of compression-ignition at medium speeds and loads was attained. Some interesting combustion characteristics, such as a shorter combustion period in higher engine speed conditions, and factors for the onset of compression-ignition were also examined.

가솔린 자동차의 희박연소시스템 적용을 위한 연료공급 최적화에 관한 연구 (I) - 가솔린 인젝터의 연료분열특성에 관한 연구 - (A Study on the Optimization of Fuel Metering for the Lean Combustion System in a Gasoline Engine (I))

  • 윤석주;조대진;방두열
    • 한국분무공학회지
    • /
    • 제3권3호
    • /
    • pp.33-41
    • /
    • 1998
  • In recently, a study on the lean combustion is investigated intensively, because it is expected that this method may decrease the harmful exhaust gas and improve fuel economy in gasoline engine. The problems of lean combustion system in gasoline engine are ignition difficulty, misfire and instability of combustion. The investigation on the optimization of fuel metering and the control of mixing gas flow may be critical to improve the performance of lean combustion. In the fuel injection gasoline engine, the formation of mixture influences strongly on the engine performance such that the importance of fuel metering system becomes apparent. First of all, a study on the fuel breakup characteristics of gasoline fuel injector was carried out in this paper. Fuel injectors are pintle and 4hole-2spray type. The purpose of this study is to clarify the atomization mechanism of spray injected into atomosphere field through electronic controlled-fuel injectors, and to analyze spray characteristics such as drop size distribution and mean drop diameter produced at fuel injector. In this paper, the spray development is observed by taking photograps using 80mm still-camera system, and drop sizes are measured by PMAS. From these experiment, spray pattern injected from gasoline fuel injectors was investigated clearly. Also, it was found that SMD and drop size distribution of injected fuel spray from gasoline fuel injectors.

  • PDF

PFI용 2홀 2분무 인젝터의 비정상 분무 특성 (Unsteady spray characteristics of two-holes two-sprays type injectorin PFI gasoline engine)

  • 김범준;이재호;조대진;윤석주
    • 한국분무공학회지
    • /
    • 제10권1호
    • /
    • pp.43-52
    • /
    • 2005
  • The effect of fuel injection spray on engine performance has been known as one of the major concerns for improving fuel economy and reducing emissions. In general, reducing the spray droplet size could prevent HC emission in gasoline engine. As far as PFI (Port Fuel Injection) gasoline engine is concerned, the mixture of air and fuel may not be uniform under a certain condition, because breakup and production of spray droplets are made in a short distance between the fuel injector and intake valve. This study, by constituting PFI gasoline spray system, was performed to study the transient spray characteristics and dynamic behavior of droplets from 2hole 2spray type injector used in DOHC gasoline engine. Mean droplet size and optical concentration in accordance with various conditions were measured by LDPA and CCD camera. Through this study, the variation of drop size and optical concentration could be used for understanding the behavior of unsteady spray was declared and the existing the small droplets between each pulse spray could be estimated caused to the development of wall film was conformed.

  • PDF

압축비 변경에 따른 CNG차량의 성능특성 연구 (Performance Characteristics of CNG Vehicle at Various Compression Ratios)

  • 김봉석;이영재;고창조
    • 에너지공학
    • /
    • 제5권1호
    • /
    • pp.42-49
    • /
    • 1996
  • 천연가스는 기존 내연기관의 구조를 크게 변경시키지 않고도 사용이 가능하며, 저공해성, 안전성, 내구성 등에 있어서 우수한 특성을 가지고 있고, 매장량이 풍부하다는 점에서 자동차용 대체연료로서 유망시 되고 있다. 본 연구에서는 기존 가솔린 기관을 CNG 전용기관으로 개조한 후, 공연비, 점화시기 등과 같은 기관 운전조건들을 최적화한 CNG전용기관을 기존 가솔린차량에 탑재하여, 샤시동력계상에서 연료소비량 및 배기배출물 농도를 측정·비교하였다. 또한, 실도로상에서 가속성, 운전성 등의 차량 주행특성에 대해서도 평가하였다. 그 결과, 시작 CNG차량의 경우에는 가솔린 차량에 비하여 연비는 향상되었고 배기배출물은 저감되었으나 출력은 약간 감소되었다.

  • PDF

천연가스 기관의 성능 향상에 관한 연구 (A study on performance improvement of natural gas fueled engine)

  • 정동수;정진도;서승우;최교남
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.175-179
    • /
    • 1992
  • 본 연구에서는 LPG 기관을 천연가스 이용기관으로 변경하고자 할 때 발생하는 출력 감소를 보안하기 우하여, 공기연료 혼합비 조절, 점화시기조절, 과급효과 방법에 의한 출력향상 효과를 파악하였다.

가솔린 LPG 엔진오일의 사용에 따른 물리적, 화학적 성질의 변화에 관한 연구 (A Study of the Changes in Physical and Chemical Properities of Oil Used in Gasoline and LPG Engine)

  • 강석춘;신성철;김동길;노장섭
    • Tribology and Lubricants
    • /
    • 제10권4호
    • /
    • pp.59-68
    • /
    • 1994
  • This study is concerned with the change of physical and chemical properties of the used oil in gasoline and LPG engine. The used oils of engine were sampled from dynamometer and cars. The field tests of car were done in city and on highway. The properties of oil were TAN, TBN, visocity, oxidation, ZDTP depletion factor and etc. Also the relation between the chemical change and antiwear property was studied. From the study, it was shown that the decrease of antiwear property of used oil was depended on the changes of ZDTP depletion factor as well as TAN (total acid number). Also, it was found that the oil used by LPG car was deteriorated within the shortest distance among the other gasoline cars. The antiwear property of oil decreased as the running distance increased. The gasoline engine oil drove mainly on highway was the least deteriorate of properities for the same running distance.

스파크 점화기관에서 가솔린 에탄올과 메탄올 혼합 연료의 성능과 배기 특성 (Performance and Emission Characteristics of Ethanol and Methanol Gasoline Blended Fuels in a Spark Ignition Engine)

  • 한성빈;박준영
    • 한국수소및신에너지학회논문집
    • /
    • 제27권4호
    • /
    • pp.441-446
    • /
    • 2016
  • Alcohols are particularly attractive as alternative fuels because they are a renewable resource. This paper describes the performance and emission characteristics of ethanol and methanol gasoline blended fuels in a spark ignition engine. This experimental results showed that alcohol gasoline blended fuels decreased the torque, brake mean effective pressure, and brake power decreased when alcohol blended fuels were applied to a gasoline engine and also CO, HC and NOx emissions were reduced in accordance with the contents of alcohol contents.

가솔린 엔진(3.8L)에서 바이오에탄올 혼합연료의 성능 및 배출특성에 관한 연구 (A Study on Engine Performance and Exhaust Emission Characteristics of Gasoline Engine using Bio-ethanol Blended Fuel)

  • 이치우
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.131-137
    • /
    • 2012
  • This article is about using the fuel mixed with 10% and 20% bio-ethanol to gasoline for the engine as a way to reduce carbon emission before commercializing future automobiles like fuel cell cars. The fuel mixed with 10% and 20% bio-ethanol showed output equivalent to that of the previous gasoline fuel. CO and $CO_2$ emission was somewhat reduced, but the difference was not significant. And the consumption of the fuel increased slightly. However, bio-ethanol is produced from bio mass growing with the absorption of carbon dioxide, so the total amount of carbon dioxide did not increase according to the result. In NOx, as the use of ethanol increases, the effect of reduction gets greater, and the emission of oxygen showed almost no change compared with gasoline.

연소실 직접분사식 성층급기 가솔린기관의 구동안정성에 관한 연구 -열방출율과 도시평균유효압력 변동에 미치는 연료분사압력과 부하변동의 영향- (A Study on Driving Stability of In-cylinder Direct Injection Stratified Charge Gasoline Engine - Effects on HR rate and $COV_{imep}$ of Fuel Injection Pressure and Load Variations -)

  • 이상만;이근오
    • 한국안전학회지
    • /
    • 제13권3호
    • /
    • pp.3-10
    • /
    • 1998
  • In general, the stratified charge for direct injection gasoline engine should be introduced to achieve ultra-lean combustion scheme. In order to apply the concept of stratified charge into direct injection gasoline engine, a reflector was adapted on cylinder head. An installation of the reflector in front of the injector nozzle leads the mixture to be rich near spark plug. Therefore, the mixture near the spark plug is locally ich to ignite while the lean mixture is wholly introduced into the combustion chamber. In this paper, the characteristics of combustion is analyzed with the variations of injection pressure and load in a stratified-charge direct injection single cylinder gasoline engine.

  • PDF