• Title/Summary/Keyword: Gasification reaction

Search Result 154, Processing Time 0.022 seconds

The Effect on the Steam Gasification Reaction of Low-Rank Coal Mixed with Waste Catalysts (저급 석탄과 혼합한 폐촉매의 수증기 가스화 반응에 미치는 영향)

  • Kwak, Jaehoon;Seo, Seokjin;Lee, Sojung;Song, Bungho;Sohn, Jung Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.647-653
    • /
    • 2012
  • We have investigated the kinetics and activity of waste catalysts for steam-lignite gasification. Waste catalysts I, II, III and reference $K_2CO_3$ were used and physical mixed with a coal. The gasification experiments were carried out with the low rank coal loaded with 1 wt% and 5 wt% catalyst at the temperature range from 700 to $900^{\circ}C$ using thermobalance reactor. It was observed that the carbon conversion reached almost 100% regardless of the kinds of catalysts at $900^{\circ}C$. The shortest time to reach the designated conversion was obtained for 1 wt% waste catalyst II and 5 wt% $K_2CO_3$ at $900^{\circ}C$. The gasification reaction rate constant increased with increasing the temperature. Highest rate constant was obtained with $K_2CO_3$ at $900^{\circ}C$. The lowest activation energy was 69.42 kJ/mol for 5 wt% waste catalyst II. The waste catalyst had an influence on the reduction of activation energy.

A Preliminary Study on Simulating the Hydrogen Production Process through Biomass Gasification Using Rice Husks from Korea (한국 왕겨 바이오매스의 가스화를 통한 수소 생산 공정모사 예비 연구)

  • JIHYUN SON;MIRAE YU;MYUNGJI KIM;SANGHUN LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.699-706
    • /
    • 2022
  • Recently, hydrogen production is attracting attention. In this study, a process simulation was conducted on the gasification reaction to produce hydrogen using rice husks, which are produced as by-products of rice. For this purpose, Chuchung, Odae, and Dongjin rice, which are rice varieties produced in Korea, were compared with the literature. The Korean rice contained more hydrogen and less oxygen compared to the literature. As a result of the simulation, large amounts of H2 and CH4 and small amounts of CO2 and CO were produced accordingly. The conditions to maximize hydrogen production were a gasification reaction temperature of 700℃ and an Steam-to-Biomass (S/B) ratio of 0.4-0.6. However, because the S/B ratio is related to the gasification catalyst degradation, the model needs to be improved through additional experiments in the future. This study showed the possibility of hydrogen production using Korean rice husks, which had not been reported.

Evaluation of devolatilization models in CFD for high-pressure entrained flow coal gasifier (고압 석탄 분류층 가스화기 전산유동에서 탈휘발 모델의 영향 평가)

  • Ye, Insoo;Park, Sangbin;Ryu, Changkook;Park, Hoyoung;Kim, Bongkeun
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.37-40
    • /
    • 2012
  • In an entrained flow coal gasifier, predicting the reaction behavior of pulverized coal particles requires detailed information on devolatilization, char gasification, gaseous reactions, turbulence and heat transfer. Among the input parameters, the rate of devolatilization and the composition of volatile species are difficult to determine by experiments due to a high pressure (~40 bar) and temperature (${\sim}1500^{\circ}C$). This study investigates the effect of devolatilization models on the reaction and heat transfer characteristics of a 300 MWe Shell coal gasifier. A simplified devolatilization model and advanced model based on Flashchain were evaluated, which had different volatiles composition and devolatilization rates. It was found that the tested models produce similar flow and reaction trends, but the simplified model slightly over-predict the temperature and wall heat flux near the coal inlets.

  • PDF

A Study on the Water Gas Shift Reaction of RPF Syngas (RPF(Refuse plastic fuel) 합성가스의 수성가스 전환 반응 연구)

  • Roh, Seon Ah
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.12-18
    • /
    • 2021
  • The water-gas shift reaction is the subsequent step using steam for hydrogen enrichment and H2/CO ratio-controlled syngas from gasification. In this study, a water-gas shift reaction was performed using syngas from an RPF gasification system. The water-gas shift using a catalyst was performed in a laboratory-scale tube reactor with a high temperature shift (HTS) and a low temperature shift (LTS). The effects of the reaction temperature, steam/carbon ratio, and flow rate on H2 production and CO conversion were investigated. The operating temperature was 250-400℃ for the HTS system and 190-220℃ for the LTS system. Steam/carbon ratios were between 1.5 and 3.5, and the composition of reactant was CO : 40 vol%, H2 : 25 vol%, and CO2 : 25 vol%. The CO conversion and H2 production increased as the reaction temperature and steam/carbon ratio increased. The CO conversion and H2 production decreased as the flow rate increased due to reduced retention time in the catalyst bed.

Comparative Evaluation of Steam Gasification Reactivity of Indonesian Low Rank Coals (인도네시아 저등급 석탄의 스팀 가스화 반응성 비교 평가)

  • KIM, SOOHYUN;VICTOR, PAUL;YOO, JIHO;LEE, SIHYUN;RHIM, YOUNGJOON;LIM, JEONGHWAN;KIM, SANGDO;CHUN, DONGHYUK;CHOI, HOKYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.693-701
    • /
    • 2016
  • Steam gasification of low rank coals is possible at relatively low temperature and low pressure, and thus shows higher efficiency compared to high rank coals. In this study, the gasification reactivity of four different Indonesian low rank coals (Samhwa, Eco, Roto, Kideco-L) was evaluated in $T=700-800^{\circ}C$. The low rank coals containing $53.8{\pm}3.4$ wt% volatile matter in proximate analysis and $71.6{\pm}1.2$ wt% carbon in ultimate analysis showed comparable gasification reactivity. In addition, $K_2CO_3$ catalyst rapidly accelerated the reaction rate at $700^{\circ}C$, and all of the coals were converted over 90% within 1 hour. The XRD analysis showed no significant difference in carbonization between the coals, and the FT-IR spectrum showed similar functional groups except for differences due to moisture and minerals. TGA results in pyrolysis ($N_2$) and $CO_2$ gasification atmosphere showed very similar behavior up to $800^{\circ}C$ regardless of the coal species, which is consistent with the steam gasification results. This confirms that the indirect evaluation of the reactivity can be made by the above instrumental analyses.

A Study of Coal Gasification Process Modeling (석탄가스화 공정 모델링에 관한 연구)

  • Lee, Joong-Won;Kim, Mi-Yeong;Chi, Jun-Hwa;Kim, Si-Moon;Park, Se-Ik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.425-434
    • /
    • 2010
  • Integrated gasification combined cycle (IGCC) is an efficient and environment-friendly power generation system which is capable of burning low-ranked coals and other renewable resources such as biofuels, petcokes and residues. In this study some process modeling on a conceptual entrained flow gasifier was conducted using the ASPEN Plus process simulator. This model is composed of three major steps; initial coal pyrolysis, combustion of volatile components, and gasification of char particles. One of the purposes of this study is to develop an effective and versatile simulation model applicable to numerous configurations of coal gasification systems. Our model does not depend on the hypothesis of chemical equilibrium as it can trace the exact reaction kinetics and incorporate the residence time calculation of solid particles in the reactors. Comparisons with previously reported models and experimental results also showed that the predictions by our model were pretty reasonable in estimating the products and the conditions of gasification processes. Verification of the accuracy of our model was mainly based upon how closely it predicts the syngas composition in the gasifier outlet. Lastly the effects of change oxygen are studied by sensitivity analysis using the developed model.

Steam Gasification of Coal and Petroleum Coke in a Thermobalance and a Fluidized Bed Reactor (열천칭과 유동층반응기에서 석탄과 Petroleum Coke의 수증기 가스화반응)

  • Ji, Keunho;Song, Byungho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1015-1020
    • /
    • 2012
  • Lignite of low rank coal and petroleum coke of high sulfur content can be high potential energy sources for coal gasification process because of their plentiful supply. The steam gasification of lignite, anthracite, and pet coke has been carried out in both an atmospheric thermobalance reactor and a lab-scale fludized bed reactor (0.02 m i.d. ${\times}$ 0.6 m height). The effects of gasification temperature ($600{\sim}900^{\circ}C$) and partial pressure of steam (0.15~0.95 atm) on the gasification rate and on the heating value of product gas have been investigated. The modified volumetric reaction model was applied to the experimental data to describe the behavior of carbon conversion, and to evaluate kinetic parameters of char gasification. The results shows that higher temperature bring more hydrogen in the product syngas, and thus increased gas heating value. The feed rate of steam is needed to be optimized because an excess steam input would lower the gasification temperature which results in a degradation of fuel quality. The rank of calorific value of the product gas was anthracite > lignite > pet coke. Their obtained calorific value at $900^{\circ}C$ with 95% steam feed were 10.0 > 6.9 > 5.7 $MJ/m^3$. This study indicates that lignite and pet coke has a potential in fuel gas production.

Pressurized drop tube furnace tests of global gasification characteristics of coal (PDTF를 이용한 석탄가스화 특성 실험)

  • 신용승;최상민;안달홍
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.23-31
    • /
    • 1999
  • PDTF(Pressurized drop tube furnace) experiments using varied temperature, oxygen/coal ratio, steam/coal ratio and pressure with Roto coal(Sub A) were performed in order to investigate the effects of these experimental parameters on global gasification characteristics at elevated pressure. The results shows that the gasification at elevated pressure is more profitable than that at atmospheric pressure considering the carbon conversion and cold gas efficiency. The oxygen/coal ratio at which maximum cold gas efficiency was appeared ranged from 0.5 to 0.7g/g. Only when the temperature is sufficiently high enough, the raise of steam/coal ratio brings improvement of cold gas efficiency. As the pressure increased, the volume of carbon conversion by heterogeneous reaction increased but the volume of carbon conversion by pyrolysis decreased relatively.

  • PDF

Deriving the Rate Constants of Coal Char-CO2 Gasification using Pressurized Drop Tube Furnace (가압 DTF를 이용한 석탄 촤-CO2 가스화 반응상수 도출)

  • Sohn, Geun;Ye, Insoo;Ra, Howon;Yoon, Sungmin;Ryu, Changkook
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.4
    • /
    • pp.19-26
    • /
    • 2017
  • This study investigates the gasification of coal char by $CO_2$ under high pressures in a drop tube furnace(DTF). The rate constants are derived for the shrinking core model using the conventional method based on the set reactor conditions. The computational fluid dynamic(CFD) simulations adopting the rate constants revealed that the carbon conversion was much slower than the experimental results, especially under high temperature and high partial pressure of reactants. Three reasons were identified for the discrepancy: i) shorter reaction time because of the entry region for heating, ii) lower particle temperature by the endothermic reaction, and iii) lower partial pressure of $CO_2$ by its consumption. Therefore, the rate constants were corrected based on the actual reaction conditions of the char. The CFD results updated using the corrected rate constants well matched with the measured values. Such correction of reaction conditions in a DTF is essential in deriving rate constants for any char conversion models by $H_2O$ and $O_2$ as well as $CO_2$.

Review on the water-gas shift process for a coal SNG project (석탄 SNG 생산설비의 수성가스전환 공정 분석)

  • Kim, Youngdo;Shin, Yongseung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.75.1-75.1
    • /
    • 2011
  • Coal gasification is considered as one of the most prospective technologies in energy field since it can be utilized for various products such as electricity, SNG (Synthetic Natural Gas or Substitute Natural Gas) and other chemical products. Among those products from coal gasification, SNG is emerging as a very lucrative product due to the rising prices of oil and natural gas, especially in Asian countries. The process of SNG production is very similar to the conventional IGCC in that the overall process is highly dependent on the type of gasifier and coal rank. However, there are some differences between SNG production and IGCC, which is that SNG plant requires higher oxygen purity from oxygen plant and more complex gas cleanup processes including water-gas shift reaction and methanation. Water-gas shift reaction is one of the main process in SNG plant because it is a starting point for the latter gas cleanup processes. For the methanation process, syngas is required to have a composition of $H_2$/CO = 3. This study reviewed various considerations for water-gas shift process in a conceptual design on an early stage like a feasibility study for a real project. The factors that affect the design parameters of water-gas shift reaction include the coal properties, the type of gasifier, the overall thermal efficiency of the plant and so on. Water-gas shift reaction is a relatively proven technology compared to the other processes in SNG plant so that it can reduce technological variability when designing a SNG project.

  • PDF