• Title/Summary/Keyword: Gaseous pollutants

Search Result 132, Processing Time 0.027 seconds

Development of an 1-Dimensional Dynamic Numerical Model for BTX Removal Process Analysis by Gaseous-Biofilm Filtration (기체상-생물막 여과 공법의 BTX 제거 공정 해석을 위한 1차원 동적 수치모델 개발)

  • Kim, Yeong-Kwan;Choi, Sung-Chan;Kim, Seog-Ku;Lee, Yong-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.12
    • /
    • pp.689-695
    • /
    • 2015
  • A biofilm filtration for the removal of gaseous pollutants has been recognized as a process with a complex interaction between the gas flow characteristics and the process operating variables. This study aims to develop an one dimensional dynamic numerical model which can be utilized as a tool for the analysis of biofilm filtration process operated in plug flow mode. Since, in a plug flow system, minor environmental changes in a gaseous unit process cause a drastic change in reaction and the interaction between the pollutants is an influencing factor, plug flow system was generalized in developing the model. For facilitation of the model development, dispersion was simplified based on the principles of material balance. Several reactions such as competition, escalation, and control between the pollutants were included in the model. The applicability of the developed model was evaluated by taking the calibration and verification steps on the experimental data performed for the removal of BTX at both low and high flow concentration. The model demonstrated a correlation coefficient ($R^2$) greater than 0.79 under all the experimental conditions except for the case of toluene at high flow condition, which suggested that this model could be used for the generalized gaseous biofilm plug flow filtration system. In addition, this model could be a useful tool in analyzing the design parameters and evaluating process efficiency of the experiments with substantial amount of complexity and diversity.

Relationships between Characteristics of Emission Gases and Engine Load Condition of Diesel Locomotive Engine (디젤기관차의 출력과 배기가스 배출특성의 상관관계 연구)

  • Cho, Young-Min;Kwon, Soon-Bak;Park, Duck-Shin;Park, Eun-Young;Lim, In-Gwon
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1558-1563
    • /
    • 2007
  • The air pollution by the diesel locomotives has become serious environmental concern because the emission gases are exhausted without any further treatment. Recently, the public interest on the air pollutants emission reduction technology is increasing due to the establishment of 'Metropolitan Air Quality Preservative Law' and the regulation of local governments on the urban air quality. In this study, we measured the concentration of particulate matters and gaseous pollutants by using a scanning mobility particle sizer, a dust spectrometer, and a stack sampler upon various engine load condition. The results show that the amount of emitted air pollutants increased upon the increase of engine power. The development of new technology to reduce the air pollutants emission is urgently required.

  • PDF

Numerical Analysis for Autoignition Characteristics of Turbulent Gaseous Jets in a High Pressure Environment (고압 분위기하에 분사된 메탄가스 제트의 자연발화 및 화염전파 특성 해석)

  • Kim, Seong-Ku;Yu, Yong-Wook;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.24-32
    • /
    • 2002
  • The autoignition and subsequent flame propagation of initially nonpremixed turbulent system have been numerically analyzed. The unsteady flamelet modeling based on the RIF (Representative Interactive Flamelet) concept has been employed to account for the influences of turbulence on these essentially transient combustion processes. In this RIF approach, the partially premixed burning, diffusive combustion and formation of pollutants(NOx, soot) can be consistently modeled by utilizing the comprehensive chemical mechanism. To treat the spatially distributed inhomogeneity of scalar dissipation rate, the multiple RIFs are employed in the framework of EPFM(Eulerian Particle Flamelet Model) approach. Computations are made for the various initial conditions of pressure, temperature, and fuel composition. The present turbulent combustion model reasonably well predicts the essential features of autoignition process in the transient gaseous fuel jets injected into high pressure and temperature environment.

  • PDF

Numerical analysis for Autoignition Characteristics of Turbulent Gaseous Jets in a High Pressure Environment (고압 분위기하에 분사된 메탄가스 제트의 자연점화 및 화염전파 특성 해석)

  • 김성구;유용욱;김용모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.81-89
    • /
    • 2002
  • The autoignition and subsequent flame propagation of initially nonpremixed turbulent system have been numerically analyzed. The unsteady flamelet modeling based on the RIF (representative interactive flamelet) concept has been employed to account for the influences of turbulence on these essentially transient combustion processes. In this RIF approach, the partially premixed burning, diffusive combustion and formation of pollutants(NOx, soot) can be consistently modeled by utilizing the comprehensive chemical mechanism. To treat the spatially distributed inhomogeneity of scalar dissipation rate, the multiple RIFs are employed in the framework of EPFM(Eulerian particle flamelet model) approach. Computations are made for the various initial conditions of pressure, temperature, and fuel composition. The present turbulent combustion model reasonably well predicts the essential features of autoignition process in the transient gaseous fuel jets injected into high pressure and temperature environment.

Air Cleaning Unit using Combination of $TiO_2$ Photocatalyst and Pulsed Discharge Plasma (산화티타늄 광촉매와 펄스 방전 플라즈마 조합에 의한 공기정화장치)

  • Hong, Yeong-Gi;Sin, Su-Yeon;Gang, Jeong-Hun;Lee, Seong-Hwa;Jo, Jeong-Su;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.10
    • /
    • pp.710-715
    • /
    • 1999
  • The purpose of this work is to develop a high-efficiency air cleaning system for air pollutants such as particulate and gaseous state in indoor environments. In order to enhance a removal efficiency of gaseous state pollutants, we suggested that pulsed discharge plasma be combined with $TiO_2$ photocatalyst (photocatalytic plasma air cleaning unit). We investigated experimentally the basic characteristics of photocatalytic plasma air cleaning unit and measured air pollutants removal efficiency. The wavelength of light radiated from pulsed discharge plasma under the atmospheric condition was 310~380nm. Its energy is enough to excite the $TiO_2$ photocatalyst and it makes a photochemical reaction in the surface of $TiO_2$ photocatalyst. The removal quantity of trimethylamine$((CH_3)_3N)\; was\; 130mg/m^34 which is twice quantity of pulsed discharge plasma without $TiO_2$ phtocatalyst unit. From the result of gas analysis using FT-IR, nitric oxide was not detected and trimethylamine was decomposed to $H_2O\; and \;CO_2$. And trimethylamine removal efficiency was 95%. These experimental results indicate that photocatalytic plasma air cleaning unit is a potential method in removing the pollutants.

  • PDF

Concentrations of Air Pollutants Measured at Kosan during ACE-Asia Intensive Observation Period (ACE-Asia 집중관측기간에 제주고산에서 측정한 대기오염물질의 농도 분포특성)

  • ;;;;Jianzhen Yu;Keith Bower
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.6
    • /
    • pp.487-501
    • /
    • 2002
  • The concentrations of gaseous (NO$_{x}$, SO$_2$, and $O_3$) and particulate (Elemental Carbon, EC and Organic Carbon, OC) pollutants were measured to evaluate the air quality of Kosan. Samples were taken at Kosan during ACE-Asia (Asian Pacific Regional Aerosol Characterization Experiment) IOP (Intensive Observation Period) (2001. 3. 21~2001. 5. 5). The mean concentrations of $O_3$(46.3$\pm$10.4 ppb) is higher than those at urban area such as Seoul and Busan in Korea. On the other hand, the mean concentrations of other gaseous species, NO$_{x}$(4.73$\pm$3.42 ppb) and SO$_2$(0.62$\pm$0.63 ppb) are lower than those at great cities. So we concluded that there are a few primary sources emitting atmospheric pollutants. The concentration of EC is higher and the concentration of OC is similar with or higher than those at other background sites. The recent EC concentration is higher than those measured before at Kosan. We concluded that there are more primary sources than other background sites and the amount of primary source have increased recently in Jeju. Backward trajectory and co..elation analysis were used to study where the air masses originated and distinguish the source of pollutants. While NO$_{x}$ and $O_3$ were mainly emitted and formed from Jeju inland area, concentrations of SO$_2$, OC and EC were affected by Asian Dust from China. Using the mean relative standard deviation of ozone, cleanness coefficient was obtained. The cleanness coefficient value, is 1.6 times larger than the value in 1992. Recently, the air quality of Kosan has been contaminated because of the Asian Dust events since spring and the rapid industrialization development.pment.

Dynamics of Air Pollutants during the Yellow Sand Phenomena (黃砂現象의 大氣汚染物質 動態에 關한 硏究)

  • 李敏熙;黃奎浩;金恩植;平井英二;丁子哲治;宮崎元一
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.183-191
    • /
    • 1990
  • To check the possible transportation of gaseous air pollutants with the particles of yellow sand in the movement of air masses during the Yellow Sand Phenomenon, the concentrations of such air pollutants as TSP, $SO_2, CO, NO_x, O_3 and N-CH_4$, and wind wpeed were measured during the Yellow Sand Phenomenon (April 8 $\sim 10, 1990) and they were compared with those during the normal times in Korea. Meanwhile dust color of the samples during the Yellow Sand Phenomenon was the color of sand, that during the normal times was dark-brown. The concentrations of dusts; water soluble components, and metallic components of soil-originated elements during the Yellow Sand Phenomenon were higher than those during the normal times. While the metallic components in the dusts during the Yellow Sand Phenomenon were from soil-originated elements, those during the normal times were of both soiloriginated and sea-originated elements. The change of hourly concentrations of air pollutants showed bi-modal distribution during the two periods. Generally, the concentration levels of air pollutants during the Yellow Sand Period were higher than those during the normal times. Although similarity was observed in the primary sources, differences were observed in the dynamics of the secondary sources due to chemical reactions of the air pollutants during the two periods.

  • PDF