• Title/Summary/Keyword: Gaseous emission

Search Result 145, Processing Time 0.023 seconds

A Study on the Reduction of HC and Heat Characteristics of the Dual Pipe Exhaust Manifold (이중관 배기메니폴드의 HC저감효과 및 열특성에 관한 연구)

  • 박경석;허형석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.103-111
    • /
    • 2001
  • During cold-start period, the reduction of exhaust emissions is a challenging task. To decrease harmful gaseous substances such as HC, it is necessary to realize a fast catalyst warm-up. In this study, the performance of dual pipe exhaust system have been carried out through different test mode. From measurement of gas temperature and HC concentration, the following conclusions were derived ; 1) Compared with single pipe, dual pipe exhaust system remarkably increase temperature of exhaust gas going through M.C.C(Main Catalytic Converter). 2) W.C.C.(Warm-up Catalytic Converter) also decreases HC emission. To reduce HC emission, it is helpful to use W.C.C. as well as dual pipe exhaust system. 3) Using finite element method, it is shown that inner parts have much higher distribution of temperature than outer parts.

  • PDF

Emission Control of Fine Dust from Gas-Solid Cyclone (PoC 부착 싸이클론의 미세분진 유출 제어에 관한 연구)

  • 조영민
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.201-210
    • /
    • 1999
  • Cyclones have been extensively used in the industry for removing fine particles from the gaseous streams, based on simplicity in design and construction in association with low cost and flexibility to operate in extreme and harsh environments. However, industrial cyclones are typically not very efficient for particles smaller than 10μm. In this work, in order to improve the separation efficiency of reverse flow cyclones, a simple device named Post Cyclone(Poc) in installed on the top of an existing cyclone. Thereby the residual swirl present at the outlet (vortex finder) of a conventional cyclone has been used to capture the escaped dust from the cyclone in the PoC. The performance of PoC was closely evaluated by changing configuration of the PoC and operation condition. In addition, the dust behaviour in th PoC was investigated based on the hypothesis of residual vortex.

  • PDF

A COMPARATIVE STUDY OF GASOLINE AND CNG, AS A POTENTIAL FUEL IN KOREA

  • Chauhan, Bhupendra Singh;Cho, Haeng-Muk
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2126-2130
    • /
    • 2008
  • Gasoline engine have proved its utility in light, medium and heavy duty vehicle in every sector of the world community. The concern about long term availability of petroleum and the increasing threat for the environment by the increasing load of vehicular emission, compel the technology to upgrade itself for meeting the challenges. CNG is environmentally clean alternative to the existing SI Engines with out much change in the hardware. Many researchers have found this as a potential substitute to meet the energy requirement. Higher octane number and higher self ignition temperature make it a good gaseous fuel. Although power output is slightly lesser than the gasoline it's thermal efficiency is better than the gasoline for the same SI Engine. Results showed that reduced CO, hydrocarbon emissions is a favorable outcome, with slight increase in $NO_x$ emission when compared with gasoline fuel to dual fuel mode in the existing SI Engines.

  • PDF

Effect of Payload on Fuel Consumption and Emission of Light Duty Freight Truck during Acceleration Driving (소형 화물 차량의 적재량이 가속 주행 시의 연비 및 오염물질 배출에 미치는 영향)

  • Lee, Tae-Woo;Keel, Ji-Hoon;Jeon, Sang-Jin;Park, Jun-Hong;Lee, Jong-Tae;Hong, Ji-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.133-141
    • /
    • 2011
  • The effect of payload on fuel consumption and emission of light duty freight truck during acceleration driving has been analyzed. Running tests were carried out with various payload conditions on chassis dynamometer. A typical driving pattern for urban cities was used. Real time emission measurement systems for gaseous and soot emission were utilized to investigate the real time dynamic of fuel use and exhaust emissions. It was observed that fuel use and pollutant emissions were increased as payload was increased. Under the same payload condition, the increased amount of acceleration driving is much higher than that of steady state driving. The results demonstrated the advantages of eco-driving, which is an environmentally friendly driving manner, could be emphasized in heavier payload condition. Inertial tractive power was introduced for considering the parameters affecting emission during acceleration driving, which are speed, acceleration and payload. Fuel use and emission in various driving conditions were expressed as functions of inertial tractive power. The estimated result by these functions well predicted measured result within 10 % deviation.

Investigation on Generation and Emission of Particulate Matters and Ammonia from Mechanically-ventilated Layer House (강제환기식 산란계 사육시설의 PM, NH3 발생·배출 특성 조사)

  • Jang, Dong-Hwa;Yang, Ka-Young;Kwon, Kyeong-Seok;Kim, Jong-Bok;Ha, Tae-Hwan;Jang, Yu-Na
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.99-110
    • /
    • 2022
  • In this study, the generation and emission characteristics of particulate matter and gaseous matter in a mechanically ventilated layer house were evaluated. Each concentration of PM10, PM2.5, inhalable dust, respirable dust, and NH3 was measured and compared with occupational limit considering seasons and respiratory disorder. CAPPS (Clean Air Policy Support System) of the Ministry of Environment proposes the emission factors of PM10, PM2.5, and NH3 for a layer houses however, emission factors are still calculated from foreign factors such as CONINAIR values. As a result, it is urgent to develop national emission factors for domestic layer house. Emission coefficients of the studied mechanically-ventilated layer house in a summer season were calculated as 0.052 kg/head/year for PM10, about 12% lower than that of CAPSS, and 0.0068±0.0038 kg/head/year for PM2.5, showing no significant difference. Emission factor of NH3 was calculated as 0.159±0.031 kg/head/year, about 51% lower than that of CAPSS.

Characteristics of Atmosphere-rice Paddy Exchange of Gaseous and Particulate Reactive Nitrogen in Terms of Nitrogen Input to a Single-cropping Rice Paddy Area in Central Japan

  • Hayashi, Kentaro;Ono, Keisuke;Matsuda, Kazuhide;Tokida, Takeshi;Hasegawa, Toshihiro
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.202-216
    • /
    • 2017
  • Nitrogen (N) is an essential macronutrient. Thus, evaluating its flows and stocks in rice paddy ecosystems provides important insights into the sustainability and environmental loads of rice production. Among the N sources of paddy fields, atmospheric deposition and irrigation inputs remain poorly understood. In particular, insufficient information is available for atmosphere-rice paddy exchange of gaseous and particulate reactive N (Nr, all N species other than molecular N) which represents the net input or output through dry deposition and emission. In this study, we assessed the N inputs via atmospheric deposition and irrigation to a Japanese rice paddy area by weekly monitoring for 2 years with special emphasis on gas and particle exchange. The rice paddy during the cropping season acted as a net emitter of ammonia ($NH_3$) to the atmosphere regardless of the N fertilizer applications, which reduced the effects of dry deposition to the N input. Dry N deposition was quantitatively similar to wet N deposition, when subtracting the rice paddy $NH_3$ emissions from N exchange. The annual N inputs to the rice paddy were 3.2 to $3.6\;kg\;N\;ha^{-1}\;yr^{-1}$ for exchange, 8.1 to $9.8\;kg\;N\;ha^{-1}\;yr^{-1}$ for wet deposition, and 11.1 to $14.5\;kg\;N\;ha^{-1}\;yr^{-1}$ for irrigation. The total N input, 22.8 to $27.5\;kg\;N\;ha^{-1}\;yr^{-1}$, corresponded to 38% to 55% of the N fertilizer application rate and 53% to 67% of the brown rice N uptake. Monitoring of atmospheric deposition and irrigation as N sources for rice paddies will therefore be necessary for adequate N management.

Evaluation of Malodor Release and Control Devices in Charcoal Manufacturing Facility (숯 제조시설의 악취물질 배출특성과 관리실태 조사 연구)

  • Jeong, Ju-Young;Seo, Byeong-Ryang;Kim, Jae-Hyuck;Chin, Sung-Min;Jurng, Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.883-890
    • /
    • 2012
  • Emission characteristics of gaseous odor compounds emitted from the charcoal manufacturing process were investigated, and evaluated the odor removal efficiency of odor control devices. It was found that the measured odor dilution ratio of emission gases ranged from 10,000 to 44,814, which exceed largely the emission standard in the stack. Methylmercaptan, trimethylamine, hydrogen sulfide, acetaldehyde were turned out as major odor compounds of the charcoal manufacturing process. It was revealed that the odor removal ratio of odor control devices were very low due to the its improper maintenance and wrong design.

Estimation of Gaseous Hazardous Air Pollutants Emission from Vehicles (자동차에서 배출되는 가스상 유해대기오염물질 (HAPs) 배출량 추정)

  • Kim, Jeong;Jang, Young-Kee;Choi, Sang-Jin;Kim, Jeong-Soo;Seo, Choong-Yeol;Son, Ji-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Hazardous Air Pollutants (HAPs) are difficult to measure, analyze and assess for risk because of low ambient concentrations and varieties. Types of HAPs are Volatile organic compounds (VOCs), Polycyclic aromatic hydrocarbon (PAHs) and Aldehydes. HAP emissions from vehicles are a contributor to serious adverse health effects in urban areas. In this study, hazardous air pollutant emissions from road transport vehicles by Non-methane volatile organic compounds (NMVOC) weight fraction and PAHs emission factors are estimated in 2008. The top-five-most hazardous air pollutant emissions were estimated to toluene 864.3 ton/yr, acrolein 690.6 ton/yr, acetaldehyde 554.5 ton/yr, formaldehyde 498.7 ton/yr, propionaldehyde 421.6 ton/yr in 2008. The results for a cancer and non-cancer risk assessment of HAPs emissions show that the major cancer driver is formaldehyde and the non-cancer driver is acrolein.

Mercury Fluxes from the Nan-Ji-Do Area of Seoul -Application of Micrometerorological Methods (미기상학적 기법을 응용한 난지도지역이 수은교환율 측정연구)

  • 김민영;김기현;이강웅;정일현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.585-594
    • /
    • 2000
  • Through an application of Micrometerorological methods, we conducted measurements of Hg fluxes from Nan-Ji-Do which is well known as one of the major local areal sources in Seoul metropolitan area during Match/April of 2000. In the course of our study, we determined the concentration gradients of total gaseous Hg(between 20 and 2000 cm heights) and combined these data with Micrometerorological components to derive is fluxes. It turned out that emission from and dry deposition to soil surfaces occurred at the ratio of 72:27 from a total of 271 hourly measurements. The validity of measured concentration gradients( or resulting fluxes) was evaluated in terms of percent gradient. Accordingly, about more than 95% of gradient data derived were statistically significant. The mean fluxes of Hg across soil-air interface, when computed using the concentrations gradients and relevant parameters, were found at 253(during emission) and -846ng/$m^2$/h(during dry deposition) The occurrences of abnormalously high exchange rates appear to be the combined effects of enormously high gradient values and high transfer coefficients. While the emissions of Hg occurred constantly during the whole study periods, the occurrences of dry deposition events were observed most intensively during very limited time periods(3/29 and 4/3). The results of our study cleary indicated that the studied area is a strong local areal source, while exhibiting great potential as a major sink simultaneously.

  • PDF

Sensitivity of Ozone to NOx and VOCs in a Street Canyon (도로 협곡에서 NOx와 VOCs에 대한 오존의 민감도)

  • Lee, Kwang-Yeon;Kwak, Kyung-Hwan;Park, Seung-Bu;Baik, Jong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.3
    • /
    • pp.307-316
    • /
    • 2013
  • The sensitivity of ozone to $NO_x$ and volatile organic compounds (VOCs) emission rates under different ventilation rates and $NO_2-to-NO_x$ emission ratios in a street canyon is investigated using a chemistry box model. The carbon bond mechanism IV (CBM-IV) with 36 gaseous species and 93 chemical reactions is incorporated. $NO_x$ and VOCs emission rates considered range from 0.01 to $0.30ppb\;s^{-1}$ with intervals of $0.01ppb\;s^{-1}$. Three different ventilation rates and three different $NO_2-to-NO_x$ emission ratios are considered. The simulation results show that the ozone concentration decreases with increasing $NO_x$ emission rate but increases with increasing VOCs emission rate. When the emission ratio of VOCs to $NO_x$ is smaller than about 4, the ozone concentration is lower in the street canyon than in the background. On average, the magnitude of the sensitivity of ozone to $NO_x$ emission rate is significantly larger than that to VOCs emission rate. As the $NO_x$ emission rate increases, the magnitude of the sensitivity of ozone to $NO_x$ and VOCs emission rates decreases. Because the ozone concentration is lower in the street canyon than in the background, the increased ventilation rate enhances ozone inflow from the background. Therefore, the increase in ventilation rate results in the increase in ozone concentration and the decrease in the magnitude of the sensitivity of ozone to $NO_x$ and VOCs emission rates when the emission ratio of VOCs to $NO_x$ is smaller than about 4. On the other hand, the increase in $NO_2-to-NO_x$ emission ratio results in the increase in ozone concentration because the chemical ozone production due to the $NO_2$ photolysis is enhanced. In the present experimental setup, the contribution of the change in $NO_2-to-NO_x$ emission ratio to the change in the sensitivity of ozone to $NO_x$ emission rate is larger than that of the change in ventilation rate.