• Title/Summary/Keyword: Gas-phase Activation

Search Result 68, Processing Time 0.022 seconds

Effect of Process Parameters of UV Enhanced Gas Phase Cleaning on the Removal of PMMA (Polymethylmethacrylate) from a Si Substrate

  • Kwon, Sung Ku;Kim, Do Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.204-207
    • /
    • 2016
  • Experimental study of UV-irradiated O2/H2 gas phase cleaning for PMMA (Polymethylmethacrylate) removal is carried out in a load-locked reactor equipped with a UV lamp and PBN heater. UV enhanced O2/H2 gas phase cleaning removes polymethylmethacrylate (PMMA) better at lower process pressure with higher content of H2. O2 gas compete for UV (184.9 nm) absorption with PMMA producing O3, O(1D) and lower dissociation of PMMA. In our experimental conditions, etching reaction of PMMA at the substrate temperature between 75℃ and 125℃ had activation energy of about 5.86 kcal/mol indicating etching was controlled by surface reaction. Above the 180℃, PMMA removal was governed by a supply of reaction gas rather than by substrate temperature.

An Asymptotic Analysis of Excess Enthalpy Flame (초과엔탈피 화염의 점근 해석)

  • Lee, Dae Keun
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.135-137
    • /
    • 2014
  • Excess enthalpy flame propagating an porous inert medium, which recirculate exhaust heat to the upstream cold mixture, is theoretically analyzed. Using the activation-energy asymptotics, the flame structure is divided into the thin reaction and the gas-phase preheat zone, as is traditionally done. Ahead and behind of the two, there exist an outer preheat zone, where heat is convectively transferred from solid to gas, and a downstream re-equilibrium zone, where thermal equilibrium between phases is established. Asymptotic solutions of species and energy equations in each zone are obtained and then matched to each other, and finally the mass burning rate is obtained as a function of the flame propagation velocity with respect to the solid phase and physical properties of gas and solid.

  • PDF

Adsorption Characteristics of Oyster Shell using Activation Process (활성화 공정을 경유한 폐각의 흡착특성)

  • Lee, Seung-Bum;Hong, In-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.439-444
    • /
    • 2008
  • The oyster shell adsorbents were prepared by steam activation method to evaluate their adsorption characteristics. Washed and pulverized waste oyster shells were prepared by steam activated process in converter at the temperature range of about $700{\sim}800^{\circ}C$ after carbonized at the range of $600{\sim}1000^{\circ}C$. The shell carbonized at $1000^{\circ}C$ showed the best performance among those of other temperature ranges. Also, comparison between gas and liquid phase adsorption was performed to verify adsorbent possibility of waste shell. In case of gas phase, the adsorbent showed lower performance than existing commercial adsorbents. On the other hand, the liquid phase, they showed similar adsorption performance to commercial adsorbents when benzene was used.

Effect of Adsorbent Pore Characteristics on the Removal Efficiency of Smoke Components. (흡착제 세공 특성이 담배연기성분 제거에 미치는 영향)

  • 이영택;김영호;신창호;임광수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.14 no.1
    • /
    • pp.87-93
    • /
    • 1992
  • The adsorption efficiency of some adsorbents for the organic solvents and gas phase of smoke was investigated. 1. Specific surface area of activated carbon increased to 1900 mfg with increased activation time. 2. Adsorption efficiency of benzene and acetone increased with increasing total surface area. Adsorption capacity for gas phase such as hydrogen cyanide, aldehyde was proportional to the micro pore surface area under 20A. 3. The removal efficiency of particulate matter of smoke was higher with the adsorbents of relatively higher pore size compared to that of micro pore.

  • PDF

Stabilization of Compact Protein Structures by Macrocyclic Hosts Cucurbit[n]urils in the Gas Phase

  • Lee, Jong Wha;Park, Mi Hyun;Ju, Jeong Tae;Choi, Yun Seop;Hwang, Soo Min;Jung, Dong Jin;Kim, Hugh I.
    • Mass Spectrometry Letters
    • /
    • v.7 no.1
    • /
    • pp.16-20
    • /
    • 2016
  • Characterization of intact protein structures in the gas phase using electrospray ionization combined with ion mobility mass spectrometry has become an important tool of research. However, the biophysical properties that govern the structures of protein ions in the gas phase remain to be understood. Here, we investigated the impact of host-guest complexation of ubiquitin (Ubq) with macrocyclic host molecules, cucurbit[n]urils (CB[n]s, n = 6, 7), on its structure in the gas phase. We found that CB[n] complexation induces the formation of compact Ubq ions. Both CB[6] and CB[7] exhibited similar effects despite differences in their binding properties in solution. In addition, CB[n] attachment prevented Ubq from unfolding by collisional activation. Based on the experimental results, we suggest that CB[n]s prevent unfolding of Ubq during transfer to the gas phase to promote the formation of compact protein ions. Furthermore, interaction with positively charged residues per se is suggested to be the most important factor for the host-guest complexation effect.

Hydrogen Storage Behaviors of Multi-walled Carbon Nanotubes Modified by Physical Activation Process (기상활성화 표면처리된 다중벽 탄소나노튜브의 수소저장거동)

  • Park, Soo-Jin;Lee, Seul-Yi;Kim, Byung-Joo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.765-768
    • /
    • 2009
  • In this work, we prepared the activated multi-walled carbon nanotubes (Acti-MWNTs) with well developed physical surface structures, high specific surface area, and higher adsorption capacity by a physical activation process, in order to enhance the hydrogen storage capacity. The Acti-MWNTs' changes in the crystalline phase and in their lattice distortions were characterized by X-ray diffraction (XRD). The textural properties of the Acti-MWNTs were investigated by a nitrogen adsorption isotherms by Brunauer-Emmett-Teller (BET) equation and Harvath-Kawazoe (H-K) calculation, respectively. The hydrogen storage capacity of the Acti-MWNTs was investigated by BEL-HP at 298 K/100 bar. The hydrogen storage capacity of the Acti-MWNTs was improved with the physical activation, resulted from the formation of new hydrogen-favorable sites on the Acti-MWNT surfaces. In conclusion, the physical activation was one of the effective method to enhance the hydrogen storage capacity of the MWNTs.

  • PDF

Theoretical Studies on the Gas-Phase Wittig-Oxy-Cope Rearrangement of Deprotonated Diallyl Ether

  • Kim, Chang-Kon;Lee, Ik-Choon;Lee, Hai-Whang;Lee, Bon-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.678-681
    • /
    • 1991
  • The Wittig-oxy-Cope rearrangements of deprotonated diallyl ether, I, $CH_2={\bar{C}}H-CH-O-CH_2-CH=CH_2$, have been investigated theoretically by the AM1 method. A two step mechanism forming a Wittig product ion, II, $(CH_2=CH)$ $(CH_2=CH-CH_2)$ $CHO^-$, through a radical-pair intermediate was found to provide the most favored reaction pathway in the Wittig rearrangement. The subsequent oxy-Cope rearrangement from species II also involves a two step mechanism through a biradicaloid intermediate. The intramolecular proton transfer in I (to form $CH_2=CH-CH_2-O-{\bar{C}}H-CH=CH_2$) is a higher activation energy barrier process compared to the Wittig and oxy-Cope rearrangements and is considered to be insignificant. These results are in good agreement with the condensed-phase as well as gas-phase experimental results.

Preparation of the activated carbon for the canister form cokes

  • In-Ki, Kim;Han-Jun, Oh;Jang, Jin-Seok;Youm, Hee-Nam;Young-Shin, Ko
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.67-71
    • /
    • 1997
  • Activated carbons are the microporous carbonaceous adsorbents which are prepared from carbon-containing source materials such as wood, coal, lignite, peteroleum and sometimes synthetic high polymers. [1-2] Activated carbons shows an ability to adsorbe hydrocarbons of the gas phase. Activated carbons are used in the purification of many kinds of gas phases like hexane, benzene, toluene, gasoline, phenol etc.[3] In this study, cokes from bitminous coal were activated for the purpose of preparing the activated carbons by steam activation. The effect of the activation temperature, time, steam concentration and flow rate on the n-butane adsorption, burn off, surface area and average pore size of the activated carbons, were investigated. The adsorption characteristics of the activated carbons for gasoline are indirectly estimated by n-butane adsorption.

  • PDF

Gas sensing characteristics of $LaFeO_3$ thick films ($LaFeO_3$ 후막의 가스 감지 특성)

  • Kim, Jun-Gon;Ma, Tae-Young;Park, Ki-Cheol;Kim, Jeong-Gyoo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1769-1771
    • /
    • 2000
  • The structural, electrical and gas sensing properties of $LaFeO_3$ thick films with different heat treatments were examined. As the heat treatment temperature increases, the intensity of dominant(121) phase increases in XRD measurements. Activation energy changes with the heat treatment and sensitivity is high for the samples with high activation energy, $LaFeO_3$ films showed high sensitivity to NO, $NH_3$ and $C_{4}H_{10}$ gases.

  • PDF

Determination of the Proton Transfer Energies of Glycine and Alanine and the Influence of Water Molecules

  • Gwon, O Yeong;Kim, Su Yeon;No, Gyeong Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.410-416
    • /
    • 1995
  • The proton transfer energies of gas phase glycine and alanine and those of hydrated glycine and alanine were calculated both with Hartree-Fock and $M{\Phi}ller-Plesset$ ab initio molecular orbital (MO) calculations with 6-31G** basis set. The transition states of the proton transfer of gas phase glycine was also investigated. For zwitterions, both for glycine and alanine, the water bound to -NH3+ site stabilize the complex more compared with the water bound to -CO2-. The proton transfer energy, ΔEpt, of glycine, alanine, mono-hydrated glycine, mono-hydrated alanine, di-hydrated glycine and di-hydrated alanine were obtained as 30.78 (MP2: 22.57), 31.43, 23.99 (MP2: 17.00), 24.98, 22.87, and 25.63 kcal/mol, respectively. The activation energy for proton transfer from neutral (Nt) glycine to zwitterion (Zw) glycine, Ea, was obtained as 16.13 kcal/mol and that for reverse process, Ear, was obtained as 0.85 kcal/mol. Since the transition state of the proton transfer of gas phase glycine locate near the glycine zwitterion on the potential energy surface and the shape of the potential well of the zwitterion is shallow, the zwitterion easily changed to neutral glycine through the proton transfer.