Browse > Article
http://dx.doi.org/10.5478/MSL.2016.7.1.16

Stabilization of Compact Protein Structures by Macrocyclic Hosts Cucurbit[n]urils in the Gas Phase  

Lee, Jong Wha (Department of Chemistry, Pohang University of Science and Technology (POSTECH))
Park, Mi Hyun (Kyeongbuk Science High School)
Ju, Jeong Tae (Kyeongbuk Science High School)
Choi, Yun Seop (Kyeongbuk Science High School)
Hwang, Soo Min (Kyeongbuk Science High School)
Jung, Dong Jin (Kyeongbuk Science High School)
Kim, Hugh I. (Department of Chemistry, Korea University)
Publication Information
Mass Spectrometry Letters / v.7, no.1, 2016 , pp. 16-20 More about this Journal
Abstract
Characterization of intact protein structures in the gas phase using electrospray ionization combined with ion mobility mass spectrometry has become an important tool of research. However, the biophysical properties that govern the structures of protein ions in the gas phase remain to be understood. Here, we investigated the impact of host-guest complexation of ubiquitin (Ubq) with macrocyclic host molecules, cucurbit[n]urils (CB[n]s, n = 6, 7), on its structure in the gas phase. We found that CB[n] complexation induces the formation of compact Ubq ions. Both CB[6] and CB[7] exhibited similar effects despite differences in their binding properties in solution. In addition, CB[n] attachment prevented Ubq from unfolding by collisional activation. Based on the experimental results, we suggest that CB[n]s prevent unfolding of Ubq during transfer to the gas phase to promote the formation of compact protein ions. Furthermore, interaction with positively charged residues per se is suggested to be the most important factor for the host-guest complexation effect.
Keywords
ion mobility mass spectrometry; cucurbit[n]uril; ubiquitin; host-guest chemistry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dearden, D. V.; Ferrell, T. A.; Asplund, M. C.; Zilch, L. W.; Julian, R. R.; Jarrold, M. F. J. Phys. Chem. A 2009, 113, 989.   DOI
2 Uetrecht, C.; Rose, R. J.; van Duijn, E.; Lorenzen, K.; Heck, A. J. R. Chem. Soc. Rev. 2010, 39, 1633.   DOI
3 Lanucara, F.; Holman, S. W.; Gray, C. J.; Eyers, C. E. Nat Chem 2014, 6, 281.   DOI
4 Breuker, K.; McLafferty, F. W. Proc. Nat. Acad. Sci. USA 2008, 105, 18145.   DOI
5 Warnke, S.; von Helden, G.; Pagel, K. J. Am. Chem. Soc. 2013, 135, 1177.   DOI
6 Assaf, K. I.; Nau, W. M. Chem. Soc. Rev. 2015, 44, 394.   DOI
7 Heo, S. W.; Choi, T. S.; Park, K. M.; Ko, Y. H.; Kim, S. B.; Kim, K.; Kim, H. I. Anal. Chem. 2011, 83, 7916.   DOI
8 Zhang, H.; Grabenauer, M.; Bowers, M. T.; Dearden, D. V. J. Phys. Chem. A 2009, 113, 1508.   DOI
9 Logsdon, L. A.; Urbach, A. R. J. Am. Chem. Soc. 2013, 135, 11414.   DOI
10 Ruotolo, B. T.; Benesch, J. L. P.; Sandercock, A. M.; Hyung, S.-J.; Robinson, C. V. Nat. Protoc. 2008, 3, 1139.   DOI
11 Shi, H.; Pierson, N. A.; Valentine, S. J.; Clemmer, D. E. J. Phys. Chem. B 2012, 116, 3344.   DOI
12 Shelimov, K. B.; Jarrold, M. F. J. Am. Chem. Soc. 1997, 119, 2987.   DOI
13 Lee, J. W.; Lee, H. H. L.; Ko, Y. H.; Kim, K.; Kim, H. I. J. Phys. Chem. B 2015, 119, 4628.   DOI
14 Lee, J. W.; Shin, M. H.; Mobley, W.; Urbach, A. R.; Kim, H. I. J. Am. Chem. Soc. 2015, 137, 15322.   DOI
15 Lee, J. W.; Heo, S. W.; Lee, S. J. C.; Ko, J. Y.; Kim, H.; Kim, H. I. J. Am. Soc. Mass Spectrom. 2013, 24, 21.   DOI
16 Merenbloom, S.; Flick, T.; Daly, M.; Williams, E. J. Am. Soc. Mass Spectrom. 2011, 22, 1978.   DOI