• Title/Summary/Keyword: Gas-filled Region

Search Result 15, Processing Time 0.034 seconds

Performance Evaluation of Pixel Clustering Approaches for Automatic Detection of Small Bowel Obstruction from Abdominal Radiographs

  • Kim, Kwang Baek
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.153-159
    • /
    • 2022
  • Plain radiographic analysis is the initial imaging modality for suspected small bowel obstruction. Among the many features that affect the diagnosis of small bowel obstruction (SBO), the presence of gas-filled or fluid-filled small bowel loops is the most salient feature that can be automatized by computer vision algorithms. In this study, we compare three frequently applied pixel-clustering algorithms for extracting gas-filled areas without human intervention. In a comparison involving 40 suspected SBO cases, the Possibilistic C-Means and Fuzzy C-Means algorithms exhibited initialization-sensitivity problems and difficulties coping with low intensity contrast, achieving low 72.5% and 85% success rates in extraction. The Adaptive Resonance Theory 2 algorithm is the most suitable algorithm for gas-filled region detection, achieving a 100% success rate on 40 tested images, largely owing to its dynamic control of the number of clusters.

Effects of Volatile Impurities on Dielectric Breakdown Characteristics of XLPE (XLPE의 절연파괴특성에 미치는 휘발성 불순물의 영향)

  • 조영신;심미자;김상욱
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.301-304
    • /
    • 1997
  • Effects of volatile impurities on deterioration characteristics of XLPE were investigated. Block type plate with needle-plane electrode and artificial void filled with $N_2$gas or humidity was subjected under high electric field. The dyed region by oxidation reaction around the artificial void filled with humidity was detected before tee initiation. Electrical tree was started from the tip of void filled with $N_2$gas earlier than humidity.

  • PDF

Visualization Study on Kinematics of Bubble Motion in a Water Filled Cylindrical Tank (원형 탱크 내부의 기포운동에 대한 가시화 연구)

  • Kim, Sang-Moon;Jeong, Won-Taek;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.41-48
    • /
    • 2010
  • A visualization study to evaluate bubble motion in a tab water filled cylindrical tank with a varying flow rate of compressed air is conducted. The flow rate of compressed air varies from 1 to 5 L/min. Time resolved images are acquired by a high speed camera in 10 bit gray level at 100 fps and the measurement volume is irradiated by a 230 W halogen lamp. It is observed that there are three different regions; the bubble formation region, the rising bubble region and the free surface region. During the rise of bubble, the shape is changed as if an elastic body. Based on the binarized bubble image, the mean diameters of rising bubbles are estimated at beneath of the free surface. As the gas flow rate increases, the mean diameter is increased and the rising velocity also increases with buoyancy force.

Design of gas-gap thermal switch for reducing cooldown time of 2-stage cryocooler (2단 냉동기의 냉각시간 단축을 위한 기체-간극 열스위치 설계)

  • 김형진;장호명
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.35-38
    • /
    • 2000
  • A preliminary design of gas-gp thermal switch is presented to reduce the cooldown time of superconducting system conduction-cooled by a two-stage refrigerator without liquid cryogens. The switch connects thermally the first and the second stages (ON) to take advantage of the larger refrigeration capacity at the first stage during the beginning period. After the cryogenic temperature is reached, the switch should isolate thermally the two stages (OFF) in order to reduce the heat leak to the cold end. In this paper, a new concept for the performance index is introduced to evaluate the reduction of the cooldown time and the increase of the cooling load at the same time. In addition, the design of a gas-gap switch is discussed as a closed container of several staggered concentric tubes filled with gas, which is frozen at low temperatures for the shut-off of heat without any mechanical actuation. Some of the detailed features in the design is quantitative investigated by the gas convection model in the continuum or the rarefied gas region.

  • PDF

A study on the implementation of optical absorption spectrum analyzer for detecting gases in OF power cable (OF 케이블 Gas 검출을 위한 광흡수 스펙트럼 분석장치 구현에 관한 연구)

  • Oh, S.K.;Kang, D.S.;Kim, Y.H.;Kang, U.;Ryoo, H.S.;Park, H.S.;Roh, J.D.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2450-2452
    • /
    • 1999
  • Presently, it is now developing the optical remote gas sensor system which can measure combustible gases such as $CH_4$ and $C_2H_2$ generating by partial discharges inside the cable and connection parts to detect thermal deterioration of Oil-Filled (OF) power cable at the appropriate time. It is the most important parameter to select central wavelength of laser diode (LD) by analyzing the absorption bend of measuring gases in the infrared region. In this research, we proposed the optical spectrum analyzer to absorption band of $CH_4$ and $C_2H_2$ for the preliminary research of optical fiber gas detecting system.

  • PDF

Application of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to internal explosion inside a water-filled tube

  • Park, Jinwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.572-583
    • /
    • 2019
  • This paper aims to assess the applicability of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to the internal explosion inside a water-filled tube, which previously was studied by many researchers in separate works. Once the explosive charge located at the inner center of the water-filled tube explodes, the tube wall is subjected to an extremely high intensity fluid loading and deformed. The deformation causes a modification of the field of fluid flow in the region near the water-structure interface so that has substantial influence on the response of the structure. To connect the structure and the fluid, valid data exchanges along the interface are essential. Classical fluid structure interaction simulations usually employ a matched meshing scheme which discretizes the fluid and structure domains using a single mesh density. The computational cost of fluid structure interaction simulations is usually governed by the structure because the size of time step may be determined by the density of structure mesh. The finer mesh density, the better solution, but more expensive computational cost. To reduce such computational cost, a non-matched meshing scheme which allows for different mesh densities is employed. The coupled numerical approach of this paper has fewer difficulties in the implementation and computation, compared to gas dynamics based approach which requires complicated analytical manipulations. It can also be applied to wider compressible, inviscid fluid flow analyses often found in underwater explosion events.

An analysis on the impurities generated by discharge in AC plasma display panel (교류 플라즈마 표시기 방전 시 발생하는 불순물 종의 분석)

  • 김광남;김중균;양진호;황기웅;이석현
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.482-489
    • /
    • 1999
  • AC PDP(P1asma Display Pane1)s use the mixture of inert gases to generate a discharge inside the display pixels. Impurities such as CO, $CO_2$ and OH inside discharge region may deteriorate the characteristics of PDP operation during long life time of PDP. Electro-negative gas such as CO can cause the sustain pulse amplitude to rise by attaching electrons which will play an important role in the earlier stage of the discharge. MgO film is used to protect the dielectric layer in AC PDP, and is in contact with the free space of display pixel where it is filled with the inert gas mixture. So, MgO film can be a main source of impurities. In this experiment, we observed the change of impurity generation of various MgO films which were deposited by different methods, by using QMS. (quadropole mass spectrometer) The main impurites were $H_2$, CO and $CO_2$. And with the comparison of the TPD (temperature programmed desorption) result, it can be understood that impurity gases are generated by sputtering of MgO surface not by outgassing. Deposition method had effects on the characteristics of the impurity generation. The MgO film manufactured by e-beam evaporation generated more amount of impurity gases than the MgO films manufactured by sputtering or ion-plating. And also heat treatment of MgO film after deposition decreased the magnitude of impurity gas generation.

  • PDF

A Study on the Combined Heat Transfer and Analysis Fire Induced Combustion Gas in a partially Open Enclosure (개구부가 있는 밀폐공간내 화재의 복합열전달 및 연소가스 분석에 관한 연구)

  • Park, Chan-Kuk;Chu, Byeong-Gil;Kim, Cheol
    • Fire Science and Engineering
    • /
    • v.11 no.1
    • /
    • pp.21-35
    • /
    • 1997
  • The natural convection and combined heat transfer induced by fire in a rectangular enclosure is numerically studied. The model for this numerical analysis is partially opened right wall. The solution procedure includes the standard k-$\varepsilon$ model for turbulent flow and the discrete ordinates method (DOM) is used for the calculation of radiative heat transfer equation. In numerical study, SIMPLE algorithm is applied for fluid flow analysis, and the investigations of combustion gas induced by fire is performed by FAST model of HAZARD I program. In this study, numerical simulation on the combined naturnal convection and radiation is carried out in a partial enclosure filled with absorbed-emitted gray media, but is not considered scattering problem. The streamlines, isothermal lines, average radiation intensity and kinetic energy are compared the results of pure convection with those of the combined convection-radiation, the combined heat transfer. Comparing the results of pure convection with those of the combined convection-radiation, the combined heat transfer analysis shows the stronger circulation than those of the pure convection. Three different locations of heat source are considered to observe the effect of heat source location on the heat transfer phenomena. As the results, the circulation and the heat transfer in the left region from heating block are much more influenced than those in the right region. It is also founded that the radiation effect cannot be neglected in analyzing the building in fire. And as the results of combustion gas analysis from FAST model, it is found that O2 concentration is decreased according to time. While CO and CO2 concentration are rapidly increased in the beginning(about 100sec), but slowly decreased from that time on.

  • PDF

A Loss-of-RHR Event under the Various Plant Configurations in Low Power or Shutdown Conditions

  • Seul, Kwang-Won;Bang, Young-Seok;Lee, Sukho;Kim, Hho-Jung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.551-556
    • /
    • 1997
  • A present study addresses a loss-of-RHR event as an initiating event under specific low power or shutdown conditions. Two typical plant configurations, cold leg opening case with water-filled steam generators and pressurizer opening case with emptied steam generators, were evaluated using the RELAP5/ MOD3.2 code. The calculation was compared with the experiment conducted at ROSA-IV/LSTF in Japan. As a result, the code was capable of simulating the system transient behavior following the event. Especially, thermal hydraulic transport processes including non-condensable gas behavior were reasonably predicted with an appropriate time step and CPU time. However, there were some code deficiencies such as too large system mass errors and severe flow oscillations in core region.

  • PDF

A study on the Analysis of Combustion Gas and its Flow Induced by Fire in an Enclosure (밀폐공간내 화재에 의해 생성된 연소가스 분석 및 유동에 관한 연구)

  • 추병길;조성곤
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.77-93
    • /
    • 1997
  • The natural convection and combined heat transfer induced by fire in a rectangular enclosure is numerically studied. The model for this numerical analysis is partially opened, it is divided by a vertical baffle projecting from ceiling. The solution procedure Includes the standard k- $\varepsilon$ model for turbulent flow and the discrete ordinates method (DOM ) is used for the calculation of radiative heat transfer equation. In this study, numerical simulation on the combined naturnal convection and radiation is carried out in a partial enclosure filled with absorbed-emitted gray media, but is not considered scattering problem. The velocity vectors, streamlines, and isothermal lines are compared the results of pure convection with those of the combined convection-radiation, the combined heat transfer. Comparing the results of pure convection with those of the combined convection-radiation, the combined heat transfer analysis shows the stronger circulation than those of the pure convection. Three different locations of heat source are considered to observe the effect of heat source location on the heat transfer phenomena. As the results, the circulation and the heat transfer In the left region from heating block are much more influenced than those in the right region. It is also founded that the radiation effect cannot be neglected in analyzing the building in fire.

  • PDF