• 제목/요약/키워드: Gas-combined

검색결과 946건 처리시간 0.032초

Gas Turbine Data Acquisition and Monitoring System for Combined Cycle Power Plant

  • Kang, Feel-Soon
    • Journal of information and communication convergence engineering
    • /
    • 제6권4호
    • /
    • pp.405-410
    • /
    • 2008
  • This paper presents a data acquisition and monitoring system for a gas turbine. The proposed system entitled C-Tune DAS plays an important role to make an analysis of the real-time operation of the gas turbine under maintenance. The designed LabVIEW based software is divided into three parts according to their original functions, i.e., data acquisition, data analysis with display, and data storage. The data acquisition part receives data from a PMS (Plant Management System) server and two cFPs (Compact-Field Point). To verify the validity of the developed system, it is applied to gas turbines in the combined cycle power plant in Korea.

폐기물 층 연소와 노내 유동 해석 (Combined Bed Combustion and Gas Flow Simulation for a Grate Type Incinerator)

  • 류창국;신동훈;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.67-75
    • /
    • 2000
  • Computational fluid dynamics(CFD) analysis of the thermal flow in a municipal solid waste(MSW) incinerator combustion chamber provides crucial insight on the incinerator performance. However, the combustion of the waste bed is typically treated as an arbitrarily selected profile of combustion gas. A strategy for simultaneous simulation of the waste bed combustion and the thermal flow fields in the furnace chamber was introduced to substitute the simple inlet condition. A waste bed combustion model was constructed to predict the progress of combustion in the bed and corresponding generation of the gas phase species, which assumes the moving bed as a packed bed of homogeneous fuel particles. When coupled with CFD, it provides boundary conditions such as gas temperature and species distribution over the grate, and receives radiative heat flux from CFD. The combined simulation successfully predicted the physical processes of the waste bed combustion and its interaction with the flow fields for various design and operating parameters, which was limited in the previous CFD simulations.

  • PDF

Bed Combustion in a Furnace Enclosure - a Model for the MSW Incinerator

  • Ryu, Chang-Kook;Shin, Dong-Hoon;Choi, Sang-Min
    • 한국연소학회지
    • /
    • 제7권1호
    • /
    • pp.58-64
    • /
    • 2002
  • The bed combustion in an incinerator interacts with the gas flow region through heat and mass transfer. Combined bed combustion and gas flow simulations are performed to investigate this coupled interaction for various operating conditions and furnace configurations. Radiation onto the bed from the furnace is interrelated with the combustion characteristics in the bed, and is also affected by the flow pattern in the gas flow region. Since the contribution of gaseous emission to the total radiation is significant, an adequate flow pattern in a well-designed furnace shape would lead to an increased heat influx on the bed, especially in the early stage of the waste combustion. Advancing the initiation point of the waste combustion can also reduce the size of the lower gas temperature region above the bed, which can be achieved by controlling operating conditions such as the waste feeding rate, the bed height and the primary air flow distribution.

  • PDF

복합화력 발전용 재열사이클 가스터빈의 운전상태 분석 (Analysis of Operation Conditions of a Reheat Cycle Gas Turbine for a Combined Cycle Power Plant)

  • 윤수형;정대환;김동섭
    • 한국유체기계학회 논문집
    • /
    • 제9권6호
    • /
    • pp.35-44
    • /
    • 2006
  • Operation conditions of a reheat cycle gas turbine for a combined cycle power plant was analyzed. Based on measured performance parameters of the gas turbine, a performance analysis program predicted component characteristic parameters such as compressor air flow, compressor efficiency, efficiencies of both the high and low pressure turbines, and coolant flows. The predicted air flow and its variation with the inlet guide vane setting were sufficiently accurate. The compressor running characteristic in terms of the relations between air flow, pressure ratio and efficiency was presented. The variations of the efficiencies of both the high and low pressure turbines were also presented. Almost constant flow functions of both turbines were predicted. The current methodology and obtained data can be utilized for performance diagnosis.

증기분사에 의한 가스터빈 열병합발전 시스템의 성능과 운전조건 변화 - 압축기 작동 변화를 중심으로 (Changes in Performance and Operating Condition of a Gas Turbine Combined Heat and Power System by Steam Injection - A Focus on Compressor Operation)

  • 강수영;김동섭
    • 한국유체기계학회 논문집
    • /
    • 제14권6호
    • /
    • pp.68-75
    • /
    • 2011
  • This study simulated the effect of steam injection on the performance and operation of a gas turbine combined heat and power (CHP) system. A commercial simple cycle gas turbine was analyzed. A full off-design analysis was carried out to investigate the variations in not only engine performance but also the operating characteristics of the compressor caused by steam injection. Variation in engine performance and operation characteristics according to various operation modes were examined. First, the impact of full steam injection was investigated. Then, operations aiming to guarantee a minimum compressor surge margin, such as under-firing and partial steam injection, were investigated. The former and latter were turned out to be relatively superior to each other in terms of power and efficiency, respectively.

Development of CO Laser-Arc Hybrid Welding Process

  • Lee, Se-Hwan
    • 한국레이저가공학회지
    • /
    • 제5권3호
    • /
    • pp.15-20
    • /
    • 2002
  • The principal obstacle to selection of a laser processing method in production is its relatively high equipment cost and the natural unwillingness of production supervision to try something new until it is thoroughly proven. The major objective of this work is focused on the combined features of gas tungsten arc and a low-power cold laser beam. In this work, the laser beam from a 7 watts carbon monoxide laser was combined with electrical discharges from a short-pulsed capacitive discharge GTA welding power supply. When the low power CO laser beam passes through a special composition shielding gas, the CO molecules in the gas absorbs the radiation, and ionizes through a process blown as non-equilibrium, vibration-vibration pumping. The resulting laser-induced plasma(LIP) was positioned between various configurations of electrodes. The high-voltage impulse applied to the electrodes forced rapid electrical breakdown between the electrodes. Electrical discharges between tungsten electrodes and aluminum sheet specimens followed the ionized path provided by LIP. The result was well-focused melted spots.

  • PDF

소형 가스엔진 열병합 발전시스템 안전기준 개발 (A Study on the Safety Code Development of Gas Engine Micro Combined Heat and Power System)

  • 권준엽;김민우;이정운
    • 한국가스학회지
    • /
    • 제25권4호
    • /
    • pp.27-35
    • /
    • 2021
  • 최근 "전력 예비율" 급감에 대한 해결책으로 양방향 송배전이 가능한 마이크로 그리드로 전환되고 있다. 마이크로 그리드는 소규모 분산전원과 부하로 구성되는데, 분산전원의 대표적인 기술로 가정·건물에 적용하는 소형 열병합 발전시스템이 있다. 본 연구에서 가스 소비량 232.6kW(20만 kcal/h) 이내의 소형 가스엔진 발전시스템의 안전기준을 도출하고 발전 시스템, 냉각시스템, 윤활 시스템, 배기 시스템으로 구분하여 안전기준(안)을 개발하였다. 발전시스템의 경우 필터를 설치하고 가스 누출 및 엔진 회전수나 출력에 이상이 발생할 경우 이를 감지하여 시스템이 정지하도록 하였고, 냉각시스템은 냉각수 부족이나 과열이 발생할 경우 시스템이 정지하도록 규정하였다. 윤활 시스템은 윤활유의 압력과 온도를 모니터링 하고 이상이 발생할 경우 시스템을 정지하도록 하고, 배기 시스템은 국내·외 기준과 부합하여 배기가스 배출 농도 규제 값을 지정하였다. 본 연구 결과를 통해 가스엔진 발전시스템의 안전성을 향상시키고 제품 확산·보급에 이바지할 수 있다고 판단한다.

석탄가스 고압연소시 배기가스 배출특성에 관한 실험적 연구 (The experimental study on the emission characteristics of the coal gas in the condition of high pressure combustion)

  • 홍성주;이민철;김기태
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.134-134
    • /
    • 2010
  • Recently, the interest of the study about IGCC(Integrated Gasification Combined Cycle), one of New & Renewable Energy technologies, bas been increased due to the United Nations Framework Convention on Climate Change, the Low Carbon Green Growth policy, etc. Also, with this interest of IGCC, the study on the gas turbine utilizing the synthetic gas is performing actively. In the study of the gas turbine characteristic, the power performance and the combustion efficiency are mainly discussed and also the concern about the exhaust gas is being taken care of due to the increasing awareness of the environment. With this, we would like to go over the exhaust gas emission characteristic by the synthetic gas inflow in this test. In order to conduct such a test, we constructed a synthetic gas supplying system to supply the synthetic gases ($H_2$: hydrogen, $N_2$: nitrogen, CO: carbon monoxide, $CO_2$: carbon dioxide, and $H_2O$: steam) quantitatively and this combustion test was conducted by controlling the supplied synthetic gases artificially. The concentration of the exhaust gases appeared variously depending on the differences of the inflow nitrogen amount and the steam amount, whether or not the carbon dioxide flow in and so on. The results of the test can be able to be utilized for the IGCC study by understanding the exhaust gas emission characteristic of the coal gas turbine by synthetic gas composition.

  • PDF

승용 및 하이브리드 자동차 온실가스 배출특성 연구 (A study on Greenhouse gas Emission Characteristics of Conventional Passenger and Hybrid Electric Vehicles)

  • 임윤성;문선희;정택호;이종태;동종인
    • 한국분무공학회지
    • /
    • 제25권1호
    • /
    • pp.34-39
    • /
    • 2020
  • Automotive manufacturers are applying technologies for greenhouse gas reduction such as vehicle weight reduction, engine downsizing, direct injection technology, variable valves and transmission performance improvement to achieve the targets for enhanced greenhouse gas and fuel consumption efficiency. In this paper, compared and analyzed greenhouse emissions according to engine capacity, engine displacement, curb weight and sales volume of hybrid and internal combustion engine passenger vehicles. Hybrid emit 32~39% less greenhouse gas than internal combustion engines through the combined mode test method. Hybrid electric vehicle's curb weight was about 7% heavier on average for the same engine displacement, while greenhouse gas was about 36% lower. It was confirmed that in order to reduce the emission of pollutants of greenhouse gases as well as the air pollutants, it is necessary to expand the supply of eco-friendly vehicles.

가스엔진과 디젤엔진의 혼합 EGR시스템이 배기배출물에 미치는 영향 (Effects on Exhaust Gas Emission in Combined EGR System of Gas Engine and Diesel Engine)

  • 유동훈;서전수신;임재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.896-902
    • /
    • 2009
  • EGR is applied in order to lower temperature of combustion chamber by using the specific heat of carbon dioxide in engine exhaust gas. However, the problem of EGR system in diesel engine is high PM concentration. Combined EGR system can be reduced it by mixing exhaust gas of gas engine into the intake air of diesel engine. This experimental study was designed for EGR system for both engines use. The results of EGR experimental study by using diesel engine and gas engine are as follows. 1) The pressure of combustion and rate of heat release decreased. 2) The specific fuel consumption increased. But, up to middle load, it little increased. 3) NO concentration has decreased up to 50% in almost all combustion area. 4) The variation of the PM concentration at low load is not so seen. But at high load, PM increased rapidly when concentration of oxygen is decreased and most of it caused the increasing of Dry Soot.