• Title/Summary/Keyword: Gas-Insulated Transformer

Search Result 52, Processing Time 0.016 seconds

Design and Fabrication of an LPVT Embedded in a GIS Spacer (GIS 스페이서 내장형 저전력 측정용 변압기의 설계 및 제작)

  • Seung-Gwan Park;Gyeong-Yeol Lee;Nam-Hoon Kim;Cheol-Hwan Kim;Gyung-Suk Kil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.175-181
    • /
    • 2024
  • In electrical power substations, bulky iron-core potential transformers (PTs) are installed in a tank of gas-insulated switchgear (GIS) to measure system voltages. This paper proposed a low-power voltage transformer (LPVT) that can replace the conventional iron-core PTs in response to the demand for the digitalization of substations. The prototype LPVT consists of a capacitive voltage divider (CVD) which is embedded in a spacer and an impedance matching circuit using passive components. The CVD was fabricated with a flexible PCB to acquire enough insulation performance and withstand vibration and shock during operation. The performance of the LPVT was evaluated at 80%, 100%, and 120% of the rated voltage (38.1 kV) according to IEC 61869-11. An accuracy correction algorithm based on LabVIEW was applied to correct the voltage ratio and phase error. The corrected voltage ratio and phase error were +0.134% and +0.079 min., respectively, which satisfies the accuracy CL 0.2. In addition, the voltage ratio of LPVT was analyzed in ranges of -40~+40℃, and a temperature correction coefficient was applied to maintain the accuracy CL 0.2. By applying the LPVT proposed in this paper to the same rating GIS, it can be reduced the length per GIS bay by 11%, and the amount of SF6 by 5~7%.

Partial Discharge Characteristics and Localization of Void Defects in XLPE Cable (XLPE 케이블에서 보이드 결함의 부분방전 특성과 위치추정)

  • Park, Seo-Jun;Hwang, Seong-Cheol;Wang, Guoming;Kil, Gyung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.203-209
    • /
    • 2017
  • Research on condition monitoring and diagnosis of power facilities has been conducted to improve the safety and reliability of electric power supply. Although insulation diagnostic techniques for unit equipment such as gas-insulated switchgears and transformers have been developed rapidly, studies on monitoring of cables have only included aspects such as whether defects exist and partial discharge (PD) detection; other characteristics and features have not been discussed. Therefore, this paper dealt with PD characteristics against void sizes and positions, and with defect localization in XLPE cable. Four types of defects with different sizes and positions were simulated and PD pulses were detected using a high frequency current transformer (HFCT) with a frequency range of 150kHz~30MHz. The results showed that the apparent charge increased when the defect was adjacent to the conductor; the pulse count in the negative half of the applied voltage was about 20% higher than that in the positive half. In addition, the defect location was calculated by time-domain reflectometry (TDR) method, it was revealed that the defect could be localized with an error of less than1m in a 50m cable.