• Title/Summary/Keyword: Gas turbine

Search Result 1,623, Processing Time 0.03 seconds

Investigation of the High Cycle Fatigue Crack of the Gas Turbine Compressor Blade Using Finite Element Analysis (유한요소해석을 이용한 가스터빈 압축기 블레이드 피로균열 해석)

  • Yun, Wan-No;Kim, Jun-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.107-112
    • /
    • 2010
  • A gas turbine consists of an upstream compressor and a downstream turbine with a combustion chamber, and also the compressor and the turbine are generally coupled using a single shaft. Large scale gas turbine compressor is designed as multi-stage axial flow and the blade is fan-type which is thick and wide. Recently radial cracking happens occasionally at the compressor blade tip of large scale gas turbine. So, FEM was performed on the compressor blade and vibration modes and dynamic stresses were analyzed. According to the analysis, 9th natural frequency mode of the blade, which is 2 strip mode, is near the vane passing frequency by the vane located at the upstream of the blade.

Evaluation for mechanical hardness of gas turbine rotor bolt according to deterioration of specimen (시편의 열화에 따른 가스터빈 로터볼트 기계적 강도평가)

  • Gil, D.S.;Ahn, Y.S.;Park, S.K.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.19-24
    • /
    • 2011
  • The operational efficiency of domestic gas turbine is about 25% and it is now in the trend of the gradual growth in spite of the severe temperature, frequent starting and shutdown according to the environmental management and the energy-efficient use. Rotor bolts of gas turbine in power plants have been the cause of defects because these gas turbines have been operated for a long time under the high pressure and temperature environment experiencing the aging change and stress concentration of the bonded part. The connection parts of the bolt revealed various failure shape and these parts were elongated under very low pressure when operated in the relaxed condition. The cause is in the lack of the metal distribution in the bottle lack area and the cap screw of the bolt is broken totally in case that the nut is fastened in most cases. Gas turbine rotor bolts are connected to the rotor wheel and these bolts caused the vibration, the bulk accident of the rotor in the event that the coupling power among these bolts was relaxed. Therefore, we would like to evaluate the soundness of the main part of the gas turbine rotor bolt through the measurement of the inner condition change along with the mechanic deterioration and temperature, stress in the gas turbine rotor material.

Analysis of Response Characteristics of journal bearing on Millimeter-scale Micro Gas Turbine using Fluid numerical simulation (초소형 가스 터빈용 저널 베어링 내 유동장 수치해석을 통한 응답특성 분석)

  • Seo, J.H.;Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.387-391
    • /
    • 2011
  • Since MEMS based micro actuators or generating devices have high efficiency per volume, plenty of research are ongoing. Among them, MEMS based millimeter-scale micro gas' turbine is one of the most powerful issue for replacing chemical batteries. However, since limiting of MEMS manufacturing technique, it is very difficult that makes wide turbine bearing area. It causes low DN number, so sufficient bearing force is hard to achieve. Thus, the most important issue on micro gas turbine is proper bearing design which can keep rotor stable during operation. In order to that, micro-scale gas-lubricated bearing is generally used. In this paper, basic feasibility study and design of journal bearing for 10mm diameter micro gas turbine is described Journal bearing is hydrostatic gas-lubricated type. Numerical simulation is performed with ANSYS CFX 11.0 which is commercial numerical tool. Repulsive force when there is radial displacement in bearing and returning time is calculated using steady and unsteady cases. Auto re-meshing technic is used for moving mesh unsteady cases which simulate displacement of axis and its movement. The simulation results are used for further design of micro gas turbine, and experiment will be done later.

  • PDF

Performance Analysis of a Gas Turbine for IGCC Considering Plant Configuration (플랜트의 구성을 고려한 IGCC용 가스터빈의 성능해석)

  • Kim, Young-Sik;Lee, Jong-Jun;Kim, Tong-Seop;Sohn, Jeong-Lak;Joo, Yong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.704-711
    • /
    • 2008
  • Integrated gasification combined cycle (IGCC) is an environment friendly method of using coal. Several commercial IGCC plants have been built worldwide during the past decade, and a domestic development project has also been launched recently. Operation and performance characteristics of a gas turbine in the IGCC plant deviates from those of original gas turbines due to several factors such as increased amount of fuel supply and integration with other components. In this study, performance of a gas turbine in the IGCC plant is analyzed considering its integration with the air separation unit (ASU). Influence of the degree of integration (split of air supplies to ASU from the auxiliary compressor and the gas turbine compressor) on the system performance is investigated. In addition, effect of modulating nitrogen return flow from the gasifier to the gas turbine on the operating characteristics of the gas turbine is examined.

Critical Speed Analysis of a Small Gas Turbine Rotor (소형 가스터빈 회전체의 위험속도 해석)

  • Kim, Young-Cheol;Ha, Jin-Woong;Myung, Ji-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.26-30
    • /
    • 2009
  • This paper predicts the critical speeds of a 5MW industrial gas turbine by using commercial rotordynamic tool, DYNAMICS 4.3. The gas turbine is operated at 12,975 rpm on squeeze film dampers. The stiffness of the squeeze film dampers are estimated. The critical speeds of the gas turbine rotor are calculated to have a sufficient separation margin (2%) from the 1st bending mode and pass over 2 rigid body modes below 4,000 cpm. This paper discussed the coupling effects on the dynamic response of the gas turbine.

Development of Engine Simulator for The Optimal Control System Implementation of Gas Turbine Engine (가스터빈엔진 최적 제어시스템 구현을 위한 엔진 시뮬레이터 개발)

  • Lim, H.S.;Cha, Y.B.;Lee, B.S.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2082-2085
    • /
    • 2002
  • This paper describes the development of a gas turbine engine simulator in detail. The simulator presented in this paper has a mathematical engine model based on a target gas turbine engine performance data and is developed for generating a gas turbine engine sensor signals between the hardwares and softwares of a gas turbine engine control system using Data Acquisition systems(DAS) and 1553B communication, a aeronautic standard communication specification. In addition, this paper proves the excellent performance of this simulator by showing the results of a gas turbine engine field test and simulation.

  • PDF

Development of Small-sized Gas Turbine Engine Control System for Power Generation (발전용 소형가스터빈엔진 제어시스템 개발)

  • Hong, Seong-Jin;Kim, Seung-Min;Yook, Sim-Kyun;Nam, Sam-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.4
    • /
    • pp.52-56
    • /
    • 2011
  • Small-sized gas turbine engine could be applied to various fields such as propulsion, power generation, machine driving, etc., and Doosan has been developing 5MW class gas turbine engine for power generation since 2005. To verify its design performance and operating characteristics, a gas turbine engine test facility was constructed, and control system was also established to satisfy rapid and reliable control performance. In this paper, the hardware specification and structure of control system for gas turbine engine are introduced, and test result for starting characteristics analysis and loading is also presented.

Performance evaluation of a steam injected gas turbine CHP system using biogas as fuel (바이오 가스를 연료로 사용하는 증기분사 가스터빈 열병합발전 시스템의 성능분석)

  • Kang, Do-Won;Kang, Soo-Young;Kim, Tong-Seop;Hur, Kwang-Beom
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.57-62
    • /
    • 2010
  • MW-class gas turbines are suitable for distributed generation systems such as community energy systems(CES). Recently, biogas is acknowledged as an alternative energy source, and its use in gas turbines is expected to increase. Steam injection is an effective way to improve performance of gas turbines. This study intended to examine the influence of injecting steam and using biogas as the fuel on the operation and performance a gas turbine combined heat and power (CHP) system. A commercial gas turbine of 6 MW class was used for this study. The primary concern of this study is a comparative analysis of system performance in a wide biogas composition range. In addition, the effect of steam temperature and injected steam rate on gas turbine and CHP performance was investigated.

Development of Test Facility for Micro Gas Turbine (마이크로 가스터빈 시험 장치 개발)

  • Lim, Hyung-Soo;Choi, Bum-Seog;Park, Moo-Ryong;Hwang, Soon-Chan;Park, Jun-Young;Seo, Jeongmin;Bang, Je-Sung;Lim, Young-Chul;Oh, In-Kyun;Kim, Byung Ok;Cho, Ju Hyeong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.42-48
    • /
    • 2015
  • To improve the core technology of the micro gas turbine, the performance test facility was developed. This paper is focusing on the explanation of the characteristics of micro gas turbine and its assist devices. Major part of micro gas turbine were radial type of compressor, annular type of combustor, radial type of turbine, thrust foil bearing, radial foil bearing and generator. The assist devices were consist of exhaust duct, inverter, data acquisition system, load bank and test cell. Before building up the test facility, the component test was previously conducted to confirm the component performance. After the test facility was prepared, the motoring test was conducted to investigate the rotor dynamic characteristics of the micro gas turbine. Also, the part load performance test was performed. With a developed micro gas turbine test facility, the improved core technology about the micro gas turbine can be suggested to the related industries.