• Title/Summary/Keyword: Gas separation membrane

Search Result 424, Processing Time 0.026 seconds

High Permeability, High Selectivity Carbon-Silica Membranes for Gas Separation (기체분리용 고투과선택성 탄소-실리카막)

  • 이영무;박호범
    • Membrane Journal
    • /
    • v.12 no.2
    • /
    • pp.107-119
    • /
    • 2002
  • Carbon-silica ($C-SiO_2$) membranes can be easily prepared by the pyrolysis of two-phase copolymers containing an aromatic imide block and a siloxane block and remarkably high permselectivities of $He/N_2, O_2/N_2,$ and $CO_2/N_2$. The pyrolysis of the imide-siloxane block copolymers was carried out at different final temperatures, $600^{\circ}C, 800^{\circ}C,$ and $1000^{\circ}C$ under an inert atmosphere, and is the first reported case of the precursors being used for the preparation of carbon membrane. The polymeric precursors were synthesized in a wide range of siloxane content and different final morphology, and the pyrolozed membranes were tested with a high vacuum time-lag method at $25^{\circ}C$ and 76cmHg of feed pressure. In experiments with He, $CO_2, O_2 \;and \;N_2$, the membranes were found to have good $O_2/N_2$ selectivity up to 32.2 and $O_2$ permeability on the order of $10-8/cm^2(STP)cm/cm^2seccmHg.$.

Separation of Hydrogen-Nitrogen Gases by PTMSP/PDMS-Borosilicate Composite Membranes (PTMSP/PDMS-Borosilicate 복합막에 의한 수소-질소 기체 분리에 관한 연구)

  • Lee, Suk Ho;Lee, Hyun Kyung
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • The PTMSP/PDMS graft copolymer were synthesized from the PTMSP[poly(1-trimethylsilyl-1-propyne)] and the PDMS[poly(dimethylsiloxane)] and then the PTMSP/PDMS-borosilicate composite membranes were prepared by adding the porous borosilicates to the PTMSP/PDMS graft copolymer. The number-average molecular weight (${\bar{M}}_n$) and the weight-average molecular weight (${\bar{M}}_w$) of PTMSP/PDMS graft copolymer were 460,000 and 570,000 respectively, and glass transition temperature ($T_g$) of PTMSP/PDMS graft copolymer appeared at $33.53^{\circ}C$ according to DSC analysis. According to the TGA measurements, the addition of borosilicate to the PTMSP/PDMS graft copolymer leaded the decreased weight loss and the completed weight loss temperature went down. SEM observation showed that borosilicate was dispersed in the PTMSP/PDMS-borosilicate composite membranes with the size of $1{\sim}5{\mu}m$. Gas permeation experiment indicated that the addition of borosilicate to PTMSP/PDMS graft copolymer resulted in the increase in free volume, cavity and porosity resulting in the gradual shift of the mechanism of the gas permeation from solution diffusion to molecular sieving surface diffusion, and Knudsen diffusion. Consequently, the permeability of $H_2$ and $N_2$ increased and selectivity ($H_2/N_2$) decreased as the contents of borosilicate increased.

Pervaporation Characteristics of Water/Ethanol and Water/Isopropyl Alcohol Mixtures through Zeolite 4A Membranes: Activity Coefficient Model and Maxwell Stefan Model (제올라이트 4A 분리막을 이용한 물/에탄올, 물/이소프로필알코올 혼합물의 투과증발 특성 연구 : 활동도계수모형 및 Generalized Maxwell Stefan 모형)

  • Oh, Woong Jin;Jung, Jae-Chil;Lee, Jung Hyun;Yeo, Jeong-gu;Lee, Da Hun;Park, Young Cheol;Kim, Hyunuk;Lee, Dong-Ho;Cho, Churl-Hee;Moon, Jong-Ho
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.239-248
    • /
    • 2018
  • In this study, pervaporation experiments of water, ethanol and IPA (Isopropyl alcohol) single components and water/ethanol, water/IPA mixtures were carried out using zeolite 4A membranes developed by Fine Tech Co. Ltd. Those membranes were fabricated by hydrothermal synthesis (growth in hydrothermal condition) after uniformly dispersing the zeolite seeds on the tubular alumina supports. They have a pore size of about $4{\AA}$ by ion exchange of $Na^+$ to the LTA structure with Si/Al ratio of 1.0, and shows strong hydrophilic property. Physical characteristics of prepared membranes were evaluated by using SEM (surface morphology), porosimetry (macro- or meso- pore analysis), BET (micropore analysis), and load tester (compressive strength). Pervaporation experiments with various temperature and concentration conditions confirmed that the zeolite 4A membrane can selectively separate water from ethanol and IPA. Water/ethanol separation factor was over 3,000 and water/IPA separation factor was over 1,500 (50 : 50 wt%, initial feed concentration). Pervaporation behaviors of single components and binary mixtures were predicted using ACM (activity coefficient model), GMS (generalized Maxwell Stefan) model and DGM (Dusty Gas Model). The adsorption and diffusion coefficients of the zeolite top layer were obtained by parameter estimation using GA (Genetic Algorithm, stochastic optimization method). All the calculations were carried out using MATLAB 2018a version.

Stability of a Silica Membrane in the HI-$H_2O$ Gaseous Mixture (HI-$H_2O$ 기상 혼합물에서 Silica 막의 안정성)

  • HWANG Gab-Jin;PARK Chu-Sik;LEE Sang-Ho;Choi Ho-Sang
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.201-206
    • /
    • 2004
  • The stability of the prepared silica membrane by chemical vapor deposition (CVD) method in the HI-$H_2O$ gaseous mixture was evaluated aiming at the application for hydrogen iodide decomposition in the thermochemical IS process. Porous $\alpha$-alumina having pore size of 100 nm was modified by the different CVD temperature using tetraethoxysilane as the Si source. The CVD temperature was $700^{\circ}C$, $650^{\circ}C$, and $600^{\circ}C$. The $H_2$/H$_2$ selectivities of the modified membranes which were measured by single-component permeation experiment showed 43.2, 12.6, and 8.7 at $600^{\circ}C$ for the M1 (CVD temperature was $700^{\circ}C$), M2 (CVD temperature was $650^{\circ}C$) and M3 membranes (CVD temperature was $600^{\circ}C$), respectively. Stability experiment in the HI-$H_2O$ gaseous mixture was carried out at $450^{\circ}C$. The prepared silica membrane at $600^{\circ}C$ of CVD temperature was more stable than that at the other CVD temperature.

A Study on Intermediate Layer for Palladium-Based Alloy Composite Membrane Fabrication (팔라듐 합금 복합막 제조를 위한 Intermediate Layer 연구)

  • Hwang, Yong-Mook;Kim, Kwang-Je;So, Won-Wook;Moon, Sang-Jin;Lee, Kwan-Young
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.458-464
    • /
    • 2006
  • The Pd-Ni-Ag alloy composite membrane using modified porous stainless steel (PSS) as a substrate was prepared by a electroless plating technique. In this work, we have introduced the intermediate layer between Pd-based alloy and a metal substrate. As an intermediate layer, the mixtures of nickel powder and inorganic sol such as $SiO_{2}$ sol, $Al_{2}O_{3}$ sol, and $TiO_{2}$ sol were used. The intermediate layers were coated onto a PSS substrate according to various membrane preparation conditions and then $N_{2}$ fluxes through the membranes with different intermediate layers were measured. The surface morphology of the intermediate layer in the mixture of nickel powder and inorganic sol was analyzed using scanning electron microscope (SEM). Finally, the Pd-Ni-Ag alloy composite membrane using the support coated with the mixture of nickel powder and silica as an intermediate layer was fabricated and then the gas permeances for $H_{2}$ and $N_{2}$ through the Pd-based membrane were investigated. The selectivity of $H_2/N_2$ was infinite and the $H_{2}$ flux was $1.39{\times}10^{-2}mol/m^2{\cdot}s$ at the temperature of $500^{\circ}C$ and trans-membrane pressure difference of 1 bar.

Characteristics and Roles of the Submerged Separation Membrane in Anaerobic Digestion (혐기성소화에 있어서 침지형분리막의 역학과 특성)

  • Cha, Gi-Cheol;Chung, Hyung-Keun;Noh, Sao-Hong;Seo, Yang-Chan;Kim, Young-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.417-427
    • /
    • 2000
  • The substrate metabolism and bacterial population in an anaerobic digestion with the submerged separation membrane were investigated by using a laboratory-scale reactor at the hydraulic retention time(HRT) 1.0 and 0.5 day. The removal efficiencies of carbohydrate at the HRT 1.0 and 0.5 day were 99.8~99.9% and 98.0~99.6%, respectively. After the 58 days, the mixed liquor volatile suspended solids(MLVSS) concentration at the HRT 1.0 and 0.5 day were approximately 6,050 and 7,750 mg/L, respectively. According to the measurement by the most probable number(MPN) method, the numbers of acidogenic bacteria, $H_2$-utilizing and acetate-utilizing methc.nogenic bacteria were found to be $10^9$, $10^7{\sim}10^8$ and $10^6{\sim}10^8MPN/mL$, respectively. The composition of $CH_4$ in the produced gas was 46~50%. It is suggested that sulfate-reducing bacteria $10^7{\sim}10^8MPN/mL$ play an important role in producing $H_2$ and acetate in sulfate-depleted environment.

  • PDF

Preparation of Photosynthesis Nanofiber Composite Membrane by Using Chlorophyll and Polymer Nanofiber (식물 엽록소와 고분자 나노섬유를 이용한 광합성 나노섬유복합막의 제조)

  • Yun, Jaehan;Jang, Wongi;Byun, Hongsik
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • In this study, chlorophylls were been extracted from common local plants, deposited on polypropylene (PP) substrate using various approaches, and the oxygen generation effect of the chlorophylls were investigated. The loading of chlorophylls on the substrates was achieved by dipping and spraying methods, where the spraying coating showed overall better results regarding oxygen generation from the combustion experiments in the closed vessel or in the isolated vacuum oven cell than those of dip coating. In addition, a composite substrate was prepared by nylon6/6 nanofiber on the PP substrate, and it exhibited an increase in the activation of chlorophylls. In the case of samples containing titanium dioxide ($TiO_2$), the reaching time of oxygen concentration from 16% to 21% and the combustion test using a candle for a sample with 50% chlorophylls showed similar results to those of a sample without $TiO_2$. As such, combining a spray coating and $TiO_2$ incorporation into gas separation membrane systems are expected to be useful to understand the fundamentals of material properties for their applications as oxygen generation membranes and air filtration systems.

A Study of the Effect of the Permeability and Selectivity on the Performance of Membrane System Design (분리막 투과도와 분리도 인자의 시스템 설계 효과 연구)

  • Shin, Mi-Soo;Jang, Dongsoon;Lee, Yongguk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.656-661
    • /
    • 2016
  • Manufacturing membrane materials with high selectivity and permeability is quite desirable but practically not possible, since the permeability and selectivity are usually inversely proportional. From the viewpoint of reducing the cost of $CO_2$ capture, module performance is even more important than the performance of membrane materials itself, which is affected by the permeance of the membrane (P, stagecut) and selectivity (S). As a typical example, when the mixture with a composition of 13% $CO_2$ and 87% of $N_2$ is fed into the module with 10% stage cut and selectivity 5, in the 10 parts of the permeate, $CO_2$ represents 4.28 parts and $N_2$ represents 5.72 parts. In this case, the $CO_2$ concentration in the permeate is 42.8% and the recovery rate of $CO_2$ in this first separation appears as 4.28/13 = 32.9%. When permeance and selectivity are doubled, however, from 10% to 20% and from 5 to 10, respectively, the $CO_2$ concentration in the permeant becomes 64.5% and the recovery rate is 12.9/13 = 99.2%. Since in this case, most of the $CO_2$ is separated, this may be the ideal condition. For a given feed concentration, the $CO_2$ concentration in the separated gas decreases if permeance is larger than the threshold value for complete recovery at a given selectivity. Conversely, for a given permeance, increasing the selectivity over the threshold value does not improve the process further. For a given initial feed gas concentration, if permeance or selectivity is larger than that required for the complete separation of $CO_2$, the process becomes less efficient. From all these considerations, we can see that there exists an optimum design for a given set of conditions.

Evaluation of TiN-Zr Hydrogen Permeation Membrane by MLCA (Material Life Cycle Assessment) (물질전과정평가(MLCA)를 통한 TiN-Zr 수소분리막의 환경성 평가)

  • Kim, Min-Gyeom;Son, Jong-Tae;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-Zr membrane manufacturing process. The software of MLCA was Gabi. Through this, environmental impact assessment was performed for each process. Transition metal nitrides have been researched extensively because of their properties. Among these, TiN has the most attention. TiN is a ceramic materials which possess the good combination of physical and chemical properties, such as high melting point, high hardness, and relatively low specific gravity, high wear resistance and high corrosion resistance. With these properties, TiN plays an important role in functional materials for application in separation hydrogen from fossil fuel. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of characterization and normalization, environmental impacts were 94% in MAETP (Marine Aquatic Ecotoxicity), 2% FAETP (Freshwater Aquatic Ecotoxicity), 2% HTP (Human Toxicity Potential). TiN fabrication process appears to have a direct or indirect impact on the human body. It is believed that the greatest impact that HTP can have on human is the carcinogenic properties. This shows that electricity use has a great influence on ecosystem impact. TiN-Zr was analyzed in Eco-Indicator '99 (EI99) and CML 2001 methodology.

Transport Properties of Fluorinated Polyimide/PMMA-g-Silica Nanocomposite Membrane (PMMA가 그래프트된 실리카 나노입자를 포함한 불소계 폴리이미드 복합 분리막의 기체 투과 특성)

  • Kwon, Yu-Mi;Im, Hyun-Gu;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • To enhance the transport properties of gas separation membrane, we prepared 6FDA-6FpDA based polyimide membrane with PMMA-graft-silica nanoparticles. The silica was grafted PMMA which is miscible with 6FDA-based polyimide after surface treatment by 3-methacryloxypropyltrimethoxysilane ($\gamma$-MPS). The untreated silica/6FDA-6FpDA membrane showed greater permeability and less selectivity than PMMA-g-silica/6FDA-6FpDA due to its low dispersion. The transport properties of PMMA-g-silica/6FDA-GFpDA membrane were measured as a function of filler concentration. These membranes were evaluated using pure gases (He, $O_2$, $N_2$, $CO_2$). The increase in permeation was attributed to changes in the free volume distribution until 1 wt%. After 1 wt%, the permeability was decreased by excess silica which decreased effective area in polymer matrix. The selectivity was decreased with increasing permeability on the whole. However, the selectivity of $CO_2$ showed more enhance value.