• Title/Summary/Keyword: Gas separation membrane

Search Result 423, Processing Time 0.029 seconds

Gas Separation Membranes Containing $Re_6Se_8(MeCN)_6^{2+}$ Cluster-Supported Cobalt-Porphyrin Complexes

  • Park Su Mi;Won Jongok;Lee Myung-Jin;Kang Yong Soo;Kim Se-Hye;Kim Youngmee;Kim Sung-Jin
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.598-603
    • /
    • 2004
  • Cellulose nitrate (CN) composite membranes, containing cobalt porphyrin (CoP) complexes self-assembled within nanometer-sized rhenium clusters (ReCoP), have been prepared and their oxygen and nitrogen gas perme­abilities were analyzed. The solubility of ReCoP and the characteristics of the corresponding composite membranes were analyzed using a Cahn microbalance, FT-IR spectroscopy, wide-angle X-ray scattering, and differential scanning calorimetry. The nitrogen permeability through the CN composite membranes decreased upon addition of ReCoP and CoP, which implies that the presence of these oxygen carrier complexes affects the structure of the polymer matrix. The oxygen permeability through the composite membranes containing small quantities of ReCoP decreased, but it increased upon increasing the concentration. The oxygen gas transport was affected by the matrix at low ReCoP concentrations, but higher concentrations of ReCoP increased the oxygen permeability as a result of its reversible and specific interactions with oxygen, effectively realizing ReCoP carrier-mediated oxygen transport.

A Study on the Permeance Through Polymer Membranes and Selectivity of $CH_4/N_2$ (폴리이미드와 폴리이써설폰 분리막을 이용한 $CH_4/N_2$의 투과선택도 특성)

  • Park, Bo-Ryoung;Kim, Dae-Hoon;Lee, Gang-Woo;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.498-504
    • /
    • 2011
  • In this research, hollow fiber membranes were used in order to investigate to permeation and selectivity of the $CH_4$ and $N_2$. Polyimide and polyethersulfone hollow fiber membrane were prepared by the dry-wet phase inversion method and the module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy (SEM) studies showed that the produced fibers typically had an asymmetric structure. The permeance of $CH_4$ and $N_2$ were increased with pressure and temperature. However, the selectivity was decreased with increasing temperature. The permeances of $CH_4$ and $N_2$ were decreased with increasing the air gap and the effect of post-treatment on membrane showed the increase in permeance up to 3.2~7.0 times.

Progress of Nanofiltration Hollow Fiber Membrane (NF용 중공사 분리막의 발전)

  • Jang, Hanna;Kim, Seongjoong;Lee, Yongtaek;Lee, Kew-Ho
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.456-470
    • /
    • 2013
  • Hollow-fiber membranes, is one of the new technologies that is growing rapidly in the past few decades. In addition, separation membranes using polymer materials, have attracted attentions in various fields including gas separation, fuel cells, water treatment, wastewater treatment, and organic separation. Nanofiltration (NF) membranes having the separation characteristics in the intermediate range between ultrafiltration and reverse osmosis (RO) membranes for liquid separation, with relatively low investment cost and operating pressure lower than that of RO membranes, have high permeance and rejection performance of multivalent ions as well as organic compounds of molecular weight between $200{\sim}1000gmol^{-1}$. In this paper, we would like to review the research trends on the various structure control and characterization of NF hollow fiber membranes with respect to materials and the methods of preparation (phase inversion method and interfacial polymerization method). Currently, most of NF membranes have been manufactured by plate and frame types or spiral wound types. But hollow fiber types have delayed in commercial products, because of the weak strength when to produce on the basis of the existing materials, therefore the development of new materials or improvement of existing materials will be needed. If improving manufacturing technology is available, hollow fiber types will replace spiral wound types and gradually show a higher market share.

Effect of Mesoporous TiO2 in Facilitated Olefin Transport Membranes Containing Ag Nanoparticles (나노입자가 포함된 촉진수송 분리막에서의 메조기공 티타늄산화물의 영향)

  • Kim, Sang Jin;Jung, Jung Pyu;Kim, Dong Jun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.398-405
    • /
    • 2015
  • Facilitated transport is considered to be a possible solution to simultaneously improve permeability and selectivity, which is challenging in normal polymeric membranes based on solution-diffusion transport only. We investigated the effect of adding mesoporous $TiO_2$ ($m-TiO_2$) upon the separation performance of facilitated olefin transport membranes comprising poly(vinyl pyrrolidone), Ag nanoparticles, and 7,7,8,8-tetracyanoquinodimethane as the polymer matrix, olefin carrier, and electron acceptor, respectively. In particular, $m-TiO_2$ was prepared by means of a facile, mass-producible method using poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft copolymer as the template. The crystal phase of $m-TiO_2$ consisted of an anatase/rutile mixture, of crystallite size approximately 16 nm as determined by X-ray diffraction. The introduction of $m-TiO_2$ increased the membrane diffusivity, thereby increasing the mixed-gas permeance from 1.6 to 16.0 GPU ($1GPU=10^{-6}cm^3$(STP)/($s{\times}cm^2{\times}cmHg$), and slightly decreased the propylene/propane selectivity from 45 to 37. However, both the mixed-gas permeance and selectivity of the membrane containing $m-TiO_2$ rapidly decreased over time, whereas the membrane without $m-TiO_2$ had more stable long-term performance. This difference might be attributed to specific chemical interactions between $TiO_2$ and Ag nanoparticles, causing Ag to lose activity as an olefin carrier.

Clean Separation of Difluoromonochloromethane(R22)/Hexafluoropropylene(HFP) by Using Liquid-Supported Membrane(BMIBF4/PVDF) (고정화 액막(BMIBF4/PVDF)에 의한 디플루오로-클오로메탄과 헥사플루오로프로필렌의 청정분리)

  • Choi, Pyoung-Ho;Kim, Chul-Ung;Kim, Beom-Sik;Lee, Jung-Min;Koo, Kee-Kahb
    • Clean Technology
    • /
    • v.9 no.4
    • /
    • pp.169-177
    • /
    • 2003
  • In order to develope a clean technology by liquid-supported membrane of ionic liquid/PVDF, the solubility of R22 and HFP gases using BMIBF4 as ionic liquid were measured at temperatures from 0 to $30^{\circ}C$, at total pressures up to 4 bars. The solubility of R22 in this ionic liquid was shown a rapid increasing tendency with increases of pressure and decreases of temperature, respectively, whereas the solubility of HFP was showed only a little in the same conditions. Based on these results, liquid-supported membranes of ionic liquid/PVDF were prepared by variables of the deposition amount of ionic liquid in polymer matrix, PVDF and were applied to the separation of fluoro-gases(R22, HFP) including $N_2$ gas. The permeability of R22 was rapidly increased by depending on the deposition amounts of ionic liquid, whereas both of HFP and $N_2$ were just showed so little. Especially, the diffusivity coefficient and solubility parameter of R22 were increased by lower operating temperatures and increased deposition amount of ionic liquid in 1iquid membrane. In conclusion, the selectivity of R22 against HFP was changed to 10-45 times depending on both of operating temperatures and the deposition amount of ionic liquid in BMIBF4/PVDF liquid membrane.

  • PDF

Effect of Surface Modification of the Porous Stainless Steel Support on Hydrogen Perm-selectivity of the Pd-Ag Alloy Hydrogen Separation Membranes (다공성 스테인리스 강 지지체의 표면개질에 따른 팔라듐-은 합금 수소 분리막의 수소 투과 선택도의 변화)

  • Kim, Nak-Cheon;Kim, Se-Hong;Lee, Jin-Beum;Kim, Hyun-Hee;Yang, Ji-Hye;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.286-300
    • /
    • 2016
  • Pd-Ag alloy membranes have attracted a great deal of attention for their use in hydrogen purification and separation due to their high theoretical permeability, infinite selectivity and chemical compatibility with hydro-carbon containing gas streams. For commercial application, Pd-based membranes for hydrogen purification and separation need not only a high perm-selectivity but also a stable long-term durability. However, it has been difficult to fabricate thin, dense Pd-Ag alloy membranes on a porous stainless steel metal support with surface pores free and a stable diffusion barrier for preventing metallic diffusion from the porous stainless steel support. In this study, thin Pd-Ag alloy membranes were prepared by advanced Pd/Ag/Pd/Ag/Pd multi-layer sputter deposition on the modified porous stainless steel support using rough polishing/$ZrO_2$ powder filling and micro-polishing surface treatment, and following Ag up-filling heat treatment. Because the modified Pd-Ag alloy membranes using rough polishing/$ZrO_2$ powder filling method demonstrate high hydrogen permeability as well as diffusion barrier efficiency, it leads to the performance improvement in hydrogen perm-selectivity. Our membranes, therefore, are expected to be applicable to industrial fields for hydrogen purification and separation owing to enhanced functionality, durability and metal support/Pd alloy film integration.

Performance Characteristics of PEMFC by flow Configurations and Operating Condition (유로형상 및 운전조건에 따른 고분자 전해질 연료전지의 성능 특성)

  • Lee, Pil-Hyong;Cho, Son-Ah;Han, Sang-Seok;Hwang, Sang-Soon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3440-3445
    • /
    • 2007
  • For proton exchange membrane fuel cell, it is very important to design the flow channel on separation plate optimally to maximize the current density at same electrochemical reaction surface and reduce the concentration polarization occurred at high current density. In this paper, three dimensional computation model including anode and cathode domain together was developed to examine effects of flow patterns and operation conditions such as humidity and operating temperature on performance of fuel cell. Results show that voltage at counter flow condition is higher than that at coflow condition in parallel and interdigitated flow pattern. And fuel cell with interdigitated flow pattern which has better mass transport by convection flow through gas diffusion layer has higher performance than with parallel flow pattern but its pressure drop is increased such that the trade off between performance and pressure drop should be considered for selection of flow pattern of fuel cell.

  • PDF

Separation of $H_2$ and $N_2$ Gases by PDMS-chitosan Composite Membranes (PDMS-chitosan 복합막에 의한 수소와 질소 기체 분리에 관한 연구)

  • Ha, Jung Im;Kang, Tae Beom
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.418-424
    • /
    • 2013
  • The PDMS-chitosan composite membranes were prepared by addition of 0.02~0.60 wt% chitosan to PDMS. In order to investigate the characteristics of these membranes, we used the analytical methods such as SEM and TGA. Gas permeation experiments was performed in $30^{\circ}C$, $4kg/cm^2$, the permeability and selectivity of $H_2$ and $N_2$ according to content change in composite membrane were investigated. The permeability of $H_2$ and $N_2$ for the PDMS-chitosan composite membranes increased when 0~0.20 wt% chitosan was added, and then decreased at higher wt% as chitosan content increased. The selectivity ($H_2/N_2$) of PDMS-chitosan composite membranes decreased when 0~0.20 wt% chitosan was added, and then increased as chitosan content increased. In the case of PDMS-chitosan in which chitosan was inserted to PDMS, thermal stability of PDMS was enhanced. Based on SEM observation, as the chitosan content within PDMS increased, the surface of the composite membranes became coarse and began to form holes.

Separation of $H_2$ and $N_2$ by PDMS-NaYZeolite Composite Membranes (PDMS-NaYZeolite 막에 의한 수소-질소 분리에 관한 연구)

  • Ha, Jung-Im;Kang, Tae-Beom
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.47-54
    • /
    • 2010
  • The PDMS-NaYzeolite composite membranes were prepared by adding 1~40 wt% NaYzeolite to PDMS. In order to investigate the characteristics of these membranes, we used the analytical methods such as FT-IR, $^1H$-NMR, and SEM. The permselectivity of $H_2$ and $N_2$ gases through the composite membranes was studied as a function of NaYzeolite contents. The permeability and selectivity ($H_2/N_2$) of PDMS membrane increased as the gas permeation pressure increased. The permeability of the PDMS-NaYzeolite composite membranes increased when 1~10 wt% NaYzeolite was added, and then decreased at higher wt% as NaYzeolite content increased. The selectivity ($H_2/_2$) of PDMS-NaYzeolite composite membranes decreased when 1~2 wt% NaYzeolite was added, and then increased as NaYzeolite content increased. As the $H_2$ permeability increased, the selectivity ($H_2/N_2$) of PDMS-NaYzeolite composite membranes decreased at 0~2 wt% and 10~40 wt% NaYzeolite contents, increased at 2~10 wt% NaYzeolite content.

Synthetic Strategies for High Performance Hydrocarbon Polymer Electrolyte Membranes (PEMs) for Fuel Cells (고성능 탄화수소계 고분자 전해질막의 합성 전략)

  • Lee, So Young;Kim, Hyoung-Juhn;Nam, Sang Yong;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • Fuel cells are regarded as a representative energy source expected to replace fossil fuels particularly used in internal combustion engines. One of the most important components is polymer electrolyte membranes (PEMs) acting as a proton conducting barrier to prevent fuel gas crossover. Since water channels act as proton pathways through PEMs, many researchers have been focused on the 'good phase-separation of hydrophilic moiety' which ensures high water retention under low humidity enough to keep the water channel for good proton conduction. Here, we summarized the strategies which have been adopted to synthesize sulfonated PEMs having high proton conductivities even under low humidified conditions, and hope this review will be helpful to design high performance hydrocarbon PEMs.