• Title/Summary/Keyword: Gas separation membrane

Search Result 424, Processing Time 0.025 seconds

Effects of water vapor on gas permeation and process simulation (기체투과에 미치는 수분의 영향과 공정모사)

  • 김종수;안순철;이광래
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.73-74
    • /
    • 1997
  • 1. 서론 : 공기중의 산소와 질소를 분리하여 공기 중에 21% 함유된 산소를 보다 높은 농도(21%이상)로 농축하기 위한 기초자료로서 건조 산소(dry O$_2$)와 건조 질소(dry N$_2$)의 투과도를 측정하였다. 그러나 공기중에는 항상 수분이 포함되어 있으므로 공기 중에 함유된 수분(water vapour)에 의한 산소 투과도와 질소 투과도의 변화를 측정하기 위하여 상대숩도 및 압력차이에 따른 영향을 고찰하였다. 그리고 분리막공정에서 순수기체의 막에 대한 투과도를 알 수 있다면 기체 혼합물에 대한 이상분리인자(ideal separation factor)를 알 수 있으며, 이를 이용하여 분리막의 분리 성능 예측이 가능하므로 투과도 예측식을 얻는다는 것은 매우 중요하다. 본 연구에서는 counter-current model을 이용하여 기체 혼합물의 투과도를 예측하고 실험치와 비교하였다.

  • PDF

Development of high permeable $C-SiO_2$membranes derived from poly (imide siloxane) / PVP blends (폴리 이미드 실록산과 PVP 혼합물로부터 유도된 고 투과성 $C-SiO_2$ 막의 개발)

  • Lee, Ji-Min;Kim, Youn-Kook;Park, Ho-Bum;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.188-191
    • /
    • 2004
  • Carbon molecular sieve (CMS) membranes have superior gas permeation and separation performance compared with polymeric membranes$^{1.3}$ . Up to now, CMS membranes mostly have been mostly focused on the kinds of precursor and pyrolysis condition (pyrolysis temperature, heating rate, pyrolysis atmosphere).(omitted)

  • PDF

Current Status of the Application of Gas Separation Membranes (기체분리막의 응용)

  • 오상열;최기석
    • Membrane Journal
    • /
    • v.4 no.2
    • /
    • pp.63-77
    • /
    • 1994
  • 일반적으로 화학공정에서 적절한 조성으로 혼합하여 기체를 사용할 때는 순수하게 정제된 기체가 2종 또는 그 이상이 혼합된 기체보다 유용하게 이용된다. 또한 화학적으로 민감한 제품을 제조시 충진 기체로서도 순수한 기체가 필수적으로 이용되는 등 최근 화학공정 기술의 발달에 따라 순수하게 분리 또는 정제 된 각종 기체들이 제품 생산의 원료 및 공정상에서의 부원료로서 많이 이용되고 있어 기체 분리에 대한 필요성이 증가되고 있다. 예를 들어, 지구상의 생활을 떠받치고 있는 근원물질중의 하나인 산소는 생명체의 생명 유지 및 자연계에서 일어나고 있는 모든 현상에 어떠한 형태로든 관여하고 있으며 공기 부피의 약 5분의 1을 차지하고 있어 거의 무진장에 가깝게 존재하고 있다. 이러한 산소를 공기에서 가려내기란 그리 쉽지는 않다. 일반적으로는 대규모의 공기를 액화하고 액체공기의 분류에 의해 얻을 수 있지만 이를 위해 소요되는 에너지는 막대한 것이며, 일정한 규모의 설비와 장소가 필요하다. 본고에서는 고분자 막에 의해 기체를 분리하여 현재 각종 산업에 응용되고 있는 현황 및 향후 응용 가능성 있는 분야에 대한 개발 동향을 살펴보고자 관련 자료들에서 발췌하여 정리하였다.

  • PDF

Gas Permeation Properties of Carbon Dioxide and Methane for $PEBAX^{TM}$/TEOS Hybrid Membranes ($PEBAX^{TM}$/TEOS 하이브리드 분리막을 통한 이산화탄소와 메탄의 기체투과특성)

  • Kim, Hyunjoon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.460-464
    • /
    • 2011
  • Poly(ether-block-amide)(PEBA, $PEBAX^{TM}$) resin is a thermoplastic elastomer combining linear chains of hard-rigid polyamide block interspaced soft-flexible polyether block. It was believed that the hard polyamide block provides the mechanical strength and permeation selectivity, whereas gas transport occurs primarily through the soft polyether block. The objective of this work was to investigate the gas permeation properties of carbon dioxide and methane for $PEBAX^{TM}$-1657 membrane and compare with those obtained for other grade of $PEBAX^{TM}$, $PEBAX^{TM}$-2533. And the organic/inorganic hybrid membranes were prepared using $PEBAX^{TM}$ and TEOS(tetraethoxysilane) by sol-gel process, and gas permeation properties were studied. $PEBAX^{TM}$-2533 membrane exhibited higher gas permeability coefficients than $PEBAX^{TM}$-1657 membrane. This was explained by the increase of chain mobility. The permeability coefficients for $PEBAX^{TM}$/TEOS hybrid membranes were higher than pure $PEBAX^{TM}$ membranes. This results were explained by the reduction of crystallinity of polyamide block by the introduction of TEOS. Ideal separation factor of hybrid membranes does not change much. This might be due to the increase of solubility selectivity.

Analysis of CO2 Emission and Effective CO2 Capture Technology in the Hydrogen Production Process (수소생산 공정에서의 CO2 배출처 및 유효포집기술 분석)

  • Kyung Taek Woo;Bonggyu Kim;Youngseok So;Munseok Baek;Seoungsoo Park;Hyejin Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.77-83
    • /
    • 2023
  • Energy consumption is increased by rapid industrialization. As a result, climate change is accelerating due to the increase in CO2 concentration in the atmosphere. Therefore, a shift in the energy paradigm is required. Hydrogen is in the spotlight as a part of that. Currently 95% of hydrogen is fossil fuel-based reforming hydrogen which is accompanied by CO2 emissions. This is called gray hydrogen, if the CO2 is captured and emission of CO2 is reduced, it can be converted into blue hydrogen. There are 3 technologies to capture CO2: absorption, adsorption and membrane technology. In order to select CO2 capture technology, the analysis of the exhaust gas should be carried out. The concentration of CO2 in the flue gas from the hydrogen production process is higher than 20%if water is removed as well as the emission scale is classified as small and medium. So, the application of the membrane technology is more advantageous than the absorption. In addition, if LNG cold energy can be used for low temperature CO2 capture system, the CO2/N2 selectivity of the membrane is higher than room temperature CO2 capture and enabling an efficient CO2 capture process. In this study, we will analyze the flue gas from hydrogen production process and discuss suitable CO2 capture technology for it.

Processing Characteristics of the Condensed Wastewater Resulting from Food Waste Disposal using a Submerged Polyethylene Hollow Fiber Membrane (음식물 소멸기에서 발생하는 응축폐수의 Polyethylene 침지형 중공사막을 이용한 처리 특성)

  • Ryu, Jae-Sang;Jeon, Tae-Bong;Kim, Jin-Ho;Chung, Kun-Yong
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • This study is conducted about the system that reduces organism after fermenting food waste from a food waste disposal equipment, divides gas made when food waste is fermented into gas and water, and then sends gas to a reactor again, condenses water, and apply it to the MBR system with submerged MF hollow fiber membranes. A submerged MF hollow fiber membrane module was installed to a food waste disposal equipment and a water treatment system made by Bio Hitech Co,. Ltd. to process food waste generated from a staff cafeteria in a H institute for 90 days. For initial seeding of a food waste disposal equipment, 305 kg of rice bran, chaff, and sawdust as well as 1,648 kg of food were input during the operation, and 1,600 L of condensed wastewater occurred. Fermented by-product after finishing running a food waste disposal equipment was 386 kg and its reduction was shown to be 80%. The organism was processed by applying submerged MF hollow fiber membrane module to the MBR system of condensed wastewater, and the result shows reduction rates were BOD 99.9%, COD 97.5%, SS 98.6%, T-N 54.6% and T-P 34.7% and the total colon bacillus was perfectly eliminated.

Enhancement of CO2 permeance by incorporating CaCO3 in Mixed Matrix Membranes (CaCO3을 이용한 혼합매질분리막의 이산화탄소 투과도 향상)

  • Park, Cheol Hun;Jung, Jung Pyo;Lee, Jae Hun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.55-61
    • /
    • 2018
  • With vigorous development of petroleum and chemical industry, emission of carbon dioxide has attracted tremendous attention globally due to global warming problem and abnormal climate change. To address these problems, in this study, a PEGBEM-g-POEM graft copolymer with high $CO_2$ affinity was synthesized and $CaCO_3$ was incorporated to form mixed matrix membranes (MMMs) for enhancement of $CO_2$ permeance. By varying the addition weight of $CaCO_3$ in MMMs, high separation performance of $CO_2$ over $N_2$ was obtained. At 50 wt% loading of $CaCO_3$, the greatest separation performance was obtained with an enhanced $CO_2$ permeance from 22.5 to 28.16 GPU and slightly increased $CO_2/N_2$ selectivity from 44.7 to 45.42. It resulted from the increased $CO_2$ solubility of MMMs due to specific interaction between $CaCO_3$ and $CO_2$ molecules. Upon excess loading of $CaCO_3$, MMMs exhibited loss of $CO_2$ separation performance due to the formation of interfacial defects. Based on this result, it is considered that the proper addition of $CaCO_3$ is crucial for improvement of $CO_2$ separation performance.

Fabrication of Fluorinated Polymeric Membranes and Their Noble Gas Separation Properties (불소 표면 개질 고분자 분리막의 제조와 노블가스 분리특성)

  • Kim, Gi-Bum;Yoon, Kuk-Ro
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.475-478
    • /
    • 2010
  • Fluorinated polymeric membranes were prepared by direct surface modification of PDMS with fluorine gas ($50{\sim}2000\;{\mu}mol/mol$ in nitrogen). The formed fluorinated polymeric membranes were characterized by FT-IR spectroscopy, GC (Gas chromatography), atomic force microscopy, and scanning electron microscopy. Direct fluorination resulted in the change of permeability and selectivity of various gases (pure gases such as $CO_2$, $O_2$, $N_2$, $C_2H_4$, mixture of He, Ne, Kr, Xe) through PDMS membranes. Fluorination resulted in the maximum 50% increase of selectivity through PDMS membrane.

Gas Separation Properties of PTMSP-GO Composite Membrane (PTMSP-GO 복합막의 기체분리 특성)

  • Lee, Seul Ki;Hong, Se Ryeong
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.105-112
    • /
    • 2018
  • In this study, PTMSP-GO composite membranes were prepared by the addition of GO (graphene oxide) into PTMSP [poly (1-trimethylsilyl-1-propyne)] having high gas permeability, to study of gaseous membrane using GO. Gas permeation properties for $N_2$, $CH_4$, $CO_2$ were investigated by increasing the amount of GO in the PTMSP. PTMSP-GO composite membranes had higher gas permeability in the order of $N_2$ < $CH_4$ < $CO_2$. The gas permeation tendency of $N_2$, $CH_4$, and $CO_2$ increased as the content of GO increased from 0 to 10 wt%, but the gas permeability decreased as increased from 10 to 30 wt%. In the range of low GO contents, the gas permeability decreased due to the decrease of diffusivity because GO acts as a barrier in the composite membrane, and the gas permeability increased due to the void at the interface above the content range. And $CO_2$ has an affinity with -COOH of GO, the selectivity ($CO_2/N_2$) and the selectivity ($CO_2/CH_4$) gradually increase with increasing GO content. And the selectivity($CO_2/N_2$) showed the highest selectivity at 10.6 for PTMSP-GO 10 wt% and the selectivity ($CO_2/CH_4$) showed the highest selectivity at 3.4 for PTMSP-GO 20 wt%. However, above a certain amount of GO, selectivity ($CO_2/N_2$) and selectivity ($CO_2/CH_4$) decreased because the coagulation phenomenon between GO was increased and the solubility effect of $CO_2$ decreased. The PTMSP-GO 20 wt% composite membrane exhibited enhanced gas permeation characteristics with increased $CO_2$ permeability and selectivity ($CO_2/CH_4$) over PTMSP membrane.

Gas Separation Properties of Poly(ethylene oxide) and Poly(ethylene-co-vinyl acetate) Blended Membranes (Poly(ethylene oxide)와 Poly(ethylene-co-vinyl acetate)의 혼합막에 대한 기체분리 특성)

  • Lee, Hyun Kyung;Kang, Min Ji
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.147-153
    • /
    • 2017
  • In this study, we investigated permeation properties of single gas ($N_2$, $O_2$, $CO_2$) through membranes composed of poly(ethylene oxide) (PEO) and poly(ethylene-co-vinyl acetate) (EVA) blend. The prepared membranes showed no new absorbance peaks, which indicate the physical blending of PEO and EVA by FT-IR analysis. SEM observation showed that the crystalline phase of PEO decreased with increasing EVA content in the PEO/EVA mixed matrix. DSC analysis showed that the crystallinity of the PEO/EVA blend membrane decreased with increasing EVA content. Gas permeation experiment was performed with various feed pressure (4~8 bar). The permeability increased in the following order: $N_2$ < $O_2$ < $CO_2$. The permeability of $CO_2$ in PEO/EVA blend membranes were increased with increasing feed pressure, However, the permeability of $N_2$ and $O_2$ were independent of feed pressure. On the other hand, the permeability of all the gases in PEO/EVA blend membranes increased with increasing amorphous EVA content in semi-crystalline PEO. In particular, the blend membrane with 40 wt% EVA showed $CO_2$ permeability of 64 Barrer and $CO_2/N_2$ ideal selectivity of 61.5. The high $CO_2$ permeability and $CO_2/N_2$ ideal selectivity are attributed to strong affinity between the polar ether groups of PEO or the polar ester groups of EVA and polar $CO_2$.