• Title/Summary/Keyword: Gas sensors

Search Result 1,059, Processing Time 0.037 seconds

Implementation of Integrated Platform of Face Recognition CCTV and Home IOT (안면인식 CCTV와 홈 IOT의 통합 플랫폼 구현)

  • Ahn, Eun-Mo;Kim, Dong-Hoi
    • Journal of Digital Contents Society
    • /
    • v.19 no.2
    • /
    • pp.393-399
    • /
    • 2018
  • As the existing face recognition CCTV and home IOT have each individual hardware component, they have a disadvantage that the measured results of their sensors and the CCTV can not be viewed on one screen at a time. In order to overcome the above disadvantages of existing CCTV and home IOT, this paper proposes an integrated platform which constitutes the CCTV and home IOT as one hardware component using Raspberry Pi and shows each result on one screen through Smartphone application. The proposed integrated platform CCTV and home IOT system is a system which can run the application as a Smartphone and check the sensor value measured by Raspberry Pi and the picture taken through the Pi camera. The implemented system measures temperature, humidity, gas, and dust, and implements face recognition technology on a screen shot through a Pi camera, allowing it to be seen at a glance with a Smartphone.

Effects of the buffer layer annealing and post annealing temperature on the structural and optical properties of ZnO nanorods grown by a hydrothermal synthesis

  • Sin, Chang-Mi;Ryu, Hyeok-Hyeon;Lee, Jae-Yeop;Heo, Ju-Hoe;Park, Ju-Hyeon;Lee, Tae-Min;Choe, Sin-Ho;Fei, Han Qi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.24.1-24.1
    • /
    • 2009
  • The zinc oxide (ZnO) material as the II-VI compound semiconductor is useful in various fields of device applications such as light-emitting diodes (LEDs), solar cells and gas sensors due to its wide direct band gap of 3.37eV and high exciton binding energy of 60meV at room temperature. In this study, the ZnO nanorods were deposited onto homogenous buffer layer/Si(100) substrates by a hydrothermal synthesis. The Effects of the buffer layer annealing and post annealing temperature on the structural and optical properties of ZnO nanorods grown by a hydrothermal synthesis were investigated. For the buffer layer annealing case, the annealed buffer layer surface became rougher with increasing of annealing temperature up to $750^{\circ}C$, while it was smoothed with more increasing of annealing temperature due to the evaporation of buffer layer. It was found that the roughest surface of buffer layer improved the structural and optical properties of ZnO nanorods. For the post annealing case, the hydrothermally grown ZnO nanorods were annealed with various temperatures ranging from 450 to $900^{\circ}C$. Similarly in the buffer layer annealing case, the post annealing enhanced the properties of ZnO nanorods with increasing of annealing temperature up to $750^{\circ}C$. However, it was degraded with further increasing of annealing temperature due to the violent movement of atoms and evaporation. Finally, the buffer layer annealing and post annealing treatment could efficiently improve the properties of hydrothermally grown ZnO nanorods. The morphology and structural properties of ZnO nanorods grown by the hydrothermal synthesis were measured by atomic force microscopy (AFM), field emission scanning electron microscopy (SEM), and x-ray diffraction (XRD). The optical properties were also analyzed by photoluminescence (PL) measurement.

  • PDF

A Medium Access Control Protocol for Sensor Data in Powerline Communications (전력선통신방식에서 센서데이터 전달을 위한 MAC 프로토콜 설계)

  • Jin, Kyo-Hong;Choi, Pyung-Suk;Park, Mu-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.257-263
    • /
    • 2006
  • With the ever increasing demand for data communication methods, powerline communication has become in interesting alternative method for data communication in home networking. For the purpose of home safety, several sensors will be installed at door, windows, gas alarm, etc. When considering home networking, the sensor data as well as other types of data should be supported in powerline communication. Usually the sensor data do not have priority over isochronous traffics (voice, video traffic), but in the case of urgent situation at home, the data of sensor being aware of the situation should be transmitted earlier than others. The objective in this paper is to develop a method for supporting an urgent data in home networking using powerline communication. We propose a modified algorithm of HomePlug 1.0 and show the results of computer simulation.

Development of Embedded based Sea Operation Monitoring System (임베디드 환경의 해상작업 모니터링 시스템 개발)

  • Jung, Sung-Hun;Rhee, Bong-Keun;Yim, Jae-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.93-97
    • /
    • 2005
  • Sea operation monitoring system is a system for the automatic ship operation that is used on the variety sea operations such as laying optical cables on the sea between the countries, laying cables on the seabed for a remote island, laying pipelines for the natural gas, and so forth. This system processes data which optained through setting up environment and input from several sensors, and display GPS information with ENC data. And this system processes not only data of root file about sea operation, but also realtime information from PDA of client wirelessly connected with AP on wireless LAN, In addition, this system can improve efficiency of the operation as a result of enabling free movement within valid range. This paper design and Implementation Monitoring system from above appropriate to the embedded system, and improve competitive power of ship through prevention of a ship accident, to keep minimizing operation loads and support both the automatic ship operation and the safety voyage.

  • PDF

Optimization of Printing Process for the Development of Metal-oxide Resistivity Sensor (전기저항형 금속산화물 센서의 인쇄공정 최적화에 관한 연구)

  • Lee, Seokhwan;Koo, Jieun;Lee, Moonjin;Jung, Jung-Yeul;Chang, Jiho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.353-358
    • /
    • 2016
  • In this paper, we have studied about the optimum fabrication condition of the printed Indium Tin Oxide (ITO) layers for the electrical resistance-type sensor application. We have investigated on the substrates surface treatments, mixing ratio of organic binder/ITO powder, and viscosity of the printing paste to determine the optimum condition of the screen printed ITO layer. Also, we found that the printing condition is closely related with the sensor performance. To know the feasibility of printed ITO layer as an electrical resistance-type sensor, we have fabricated the ITO sensors with a printed and sputtered ITO layers. The printed ITO films revealed $10^2$ times higher sensitivity than the sputtered ITO layer. Also, the sputtered ITO layer exhibited an operating temperature of $127^{\circ}C$ at the operating voltage of 5 V. While, in case of the printed ITO layer showed the operating temperature of $27.6^{\circ}C$ in high operating voltage of 30 V. We found that the printed ITO layer is suitable for the various sensor applications.

A Study on the Formation of Detection Electrode for the IED Removal Robot by Using A Photosensitive CNT Paste (감광성 CNT 페이스트를 이용한 IED 폭발물 제거로봇 탐지전극 형성에 관한 연구)

  • Kwon, Hye Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.231-237
    • /
    • 2018
  • In this study, two important requirements for the home production of a robot to detect and remove improvised explosive devices (IEDs) are presented in terms of the total cost for robot system development and the performance improvement of the mine detection technology. Firstly, cost analyses were performed in order to provide a reasonable solution following an engineering estimate method. As a result, the total cost for a mass production system without the mine detection system was estimated to be approximately 396 million won. For the case including the mine detection system, the total cost was estimated to be approximately 411 million won, in which labor costs and overhead charges were slightly increased and the material costs for the mine detection system were negligible. Secondly, a method for fabricating the carbon nanotube (CNT) based gas detection sensor was studied. The detection electrodes were formed by a photolithography process using a photosensitive CNT paste. As a result, this method was shown to be a scalable and expandable technology for producing excellent mine detection sensors. In particular, it was found that surface treatments by using adhesive taping or ion beam bombardment methods are effective for exposing the CNTs to the ambient air environment. Fowler-Nordheim (F-N) plots were obtained from the electron-emission characteristics of the surface treated CNT paste. The F-N plot suggests that sufficient electrons are available for transport between CNT surfaces and chemical molecules, which will make an effective chemiresistive sensor for the advanced IED detection system.

Fabrication of Nickel Oxide Film Microbolometer Using Amorphous Silicon Sacrificial Layer (비정질 실리콘 희생층을 이용한 니켈산화막 볼로미터 제작)

  • Kim, Ji-Hyun;Bang, Jin-Bae;Lee, Jung-Hee;Lee, Yong Soo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.379-384
    • /
    • 2015
  • An infrared image sensor is a core device in a thermal imaging system. The fabrication method of a focal plane array (FPA) is a key technology for a high resolution infrared image sensor. Each pixels in the FPA have $Si_3N_4/SiO_2$ membranes including legs to deposit bolometric materials and electrodes on Si readout circuits (ROIC). Instead of polyimide used to form a sacrificial layer, the feasibility of an amorphous silicon (${\alpha}-Si$) was verified experimentally in a $8{\times}8$ micro-bolometer array with a $50{\mu}m$ pitch. The elimination of the polyimide sacrificial layer hardened by a following plasma assisted deposition process is sometimes far from perfect, and thus requires longer plasma ashing times leading to the deformation of the membrane and leg. Since the amorphous Si could be removed in $XeF_2$ gas at room temperature, however, the fabricated micro-bolomertic structure was not damaged seriously. A radio frequency (RF) sputtered nickel oxide film was grown on a $Si_3N_4/SiO_2$ membrane fabricated using a low stress silicon nitride (LSSiN) technology with a LPCVD system. The deformation of the membrane was effectively reduced by a combining the ${\alpha}-Si$ and LSSiN process for a nickel oxide micro-bolometer.

A Study on the Improvement of Voltage Measuring Method of 22.9 kV-y Distribution Lines (22.9 kV-y 배전선로의 전압계측방법 개선에 관한 연구)

  • Kil, Gyung-Suk;Song, Jae-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.293-299
    • /
    • 1998
  • An objective of this study is to develop a voltage measuring device that uses a gas-filled switch (GS) on 22.9 kV-y extra-high voltage distribution lines. The voltage measuring device proposed in this paper is a kind of capacitive divider which consists of a detecting electrode attached outside of the bushing of GS, an impedance matching circuit, and a voltage buffer. It can be easily installed in an established GS without changing the structure. For the calibration and application investigations, the voltage measuring device was set up in the 25.8 kV 400 A GS, and a step pulse generator having 5 ns rise time is used. As a result, it was found that the frequency bandwidth of the voltage measuring device ranges from 1.35 Hz to about 13 MHz. The error of voltage dividing ratio which is evaluated by the commercial frequency voltage of 60 Hz was less than 0.2%. In addition, voltage dividing ratio in the commercial frequency voltage and in a non-oscillating impulse voltage were compared, and their deviation were less than 0.7%.

  • PDF

Characterization and Photocatalytic effect of ZnO nanoparticles synthesized by spray-pyrolysis method

  • Lee, Sang-Duck;Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Kang-Suk;Kim, Young-Dok;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.101-101
    • /
    • 2010
  • ZnO shows a direct band gap of 3.37eV, large exciton binding energy (~60 meV), high oxidation ability, high sensitivity to many gases, and low cost, and it has been used in various applications such as transparent electrodes, light emitting diodes (LEDs), gas sensors and photocatalysts. Among these applications ZnO as photocatalyst has considerably attracted attention over the past few years because of its high activities in removing organic contaminants generated from industrial activities. In this research, ZnO nanoparticles were synthesized by spray-pyrolysis method using the zinc acetate dihydrate as starting material at synthesis temperature of $900^{\circ}C$ with concentration varied from 0.01 to 1.0M. The physical and chemical properties of the synthesized ZnO nanoparticles were examined by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transformation Infrared (FT-IR), and UV-vis spectroscopy. The Miller indices of XRD patterns indicate that the synthesized ZnO nanoparticles showed a hexagonal wurtzite structure. With increased precursor concentration, a primary, secondary particle sizes of ZnO nanoparticles increased by 0.8 to $1.5{\mu}m$ and 15 to 35nm, and their crystallinity was improved. Methyleneblue (MB) solution ($1{\mu}M$) as a test comtaminant was prepared for evaluating the photocatalytic activities of ZnO nanoparticles synthesized in different precursor concentration. The results show that the photocatalytic efficiency of ZnO nanoparticles was gradually enhanced by increased precursor concentration.

  • PDF

Context-Aware System for Status Monitoring of Industrial Automation Equipment (산업 자동화 장비의 상태감시를 위한 상황인지 시스템)

  • Kim, Kyung-Nam;Jeon, Min-Ho;Kang, Chul-Gyu;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.552-555
    • /
    • 2010
  • In this paper, we propose a context-aware system using wireless multi sensor module to monitor the state for industrial factory environment. Wireless multi sensor module combines sensing values which are collected from each acceleration, pressure, temperature and gas sensors. Moreover, it delivers this data to server after being encoded by RS code. Thereafter, RS decoder decodes the values that are received from wireless multi sensor module and fixes errors which occur in wireless communication. Based on decoded data, context-aware algorithm sets critical range and compares it to the sensing values, if the sensing values are out of the range, an event occurs by the algorithm. At the same time, if there is another sensing value which is out of the range for standby time T seconds, the algorithm orders 3 steps-alarm to occur depending on each situation. Through this system, it becomes eventually possible to monitor machines' condition effectively. From the simulation, we confirm that this system is efficient to status monitoring of industrial automation equipment.

  • PDF