• Title/Summary/Keyword: Gas regulator

Search Result 77, Processing Time 0.035 seconds

Study on Fault Detection of a Gas Pressure Regulator Based on Machine Learning Algorithms

  • Seo, Chan-Yang;Suh, Young-Joo;Kim, Dong-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.19-27
    • /
    • 2020
  • In this paper, we propose a machine learning method for diagnosing the failure of a gas pressure regulator. Originally, when implementing a machine learning model for detecting abnormal operation of a facility, it is common to install sensors to collect data. However, failure of a gas pressure regulator can lead to fatal safety problems, so that installing an additional sensor on a gas pressure regulator is not simple. In this paper, we propose various machine learning approach for diagnosing the abnormal operation of a gas pressure regulator with only the flow rate and gas pressure data collected from a gas pressure regulator itself. Since the fault data of a gas pressure regulator is not enough, the model is trained in all classes by applying the over-sampling method. The classification model was implemented using Gradient boosting, 1D Convolutional Neural Networks, and LSTM algorithm, and gradient boosting model showed the best performance among classification models with 99.975% accuracy.

Analysis of Flow and Performance of Regulator for Clean Gas Supply System (가스 조절용 레귤레이터의 유동 및 성능해석)

  • Kim, M.K.;Lee, Y.S.;Choi, W.J.;Kwon, O.B.;Park, J.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • In this study, flow characteristics at the regulators, which is very important for clean gas supply systems for semiconductors and LCD industries, are investigated. Numerical simulations are carried out to visualize flows at regulators for several flow rates and to investigate pressure losses at some parts in the regulator. Velocity field at the regulator along with the detailed velocity field near the spring and near the valve is shown. New regulator models are proposed in this paper, and numerical simulations are also carried out to visualize flows at regulator for several flow rates, and to investigate pressure losses at the parts in new models. Pressure drops a lot across the valve seat. Pressure drop increases as mass flow rate increases. Especially for small opening, pressure drop increases rapidly as mass flow rate becomes large.

  • PDF

Study on the Plan to Reduce the EVENT of the Gas Regulator (정압기 EVENT 감소방안 연구)

  • Kang-ok Yun;Tae-jun Eom;Ki-beom Kim;Yong-woo Lee;Hyoung-Min Lee;Byeong-Geun Gong
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.57-62
    • /
    • 2023
  • The Gas Regulator EVENT is a signal sent by the Remote Terminal Unit(RTU) installed in each local gas regulator (hereinafter referred to as "regulator"), and is an abnormal alarm that can be intuitively checked in our client server. This is an important data that enables immediate dispatch order and initial action in the situation room when a regolator abnormality occurs, and can analyze the cause of the regulator abnormality. Looking at the trend of EVENT data for regulator over the past three years, there is a clear trend of increasing unchecked EVENT data. The increase in non-checking event (actual abnormality or noise event) may mean that firstly, mechanical or pressure abnormality occurs in the actual regulator, and secondly, there is no abnormality in the actual regulator, but communication error occurred in the RTU, reset. EVENT Data may be formed as if an abnormality occurred in the static voltage due to an error, sensor error, power failure (instantaneous power failure), etc. Among them, this study analyzed the recently generated unchecked EVENT data to identify critical noise events among RTU errors, which are noise events, and reviewed ways to increase the reliability of Regulator EVENTs by reducing them.

A Micro Passive Gas Pressure Regulator using Pressure Balance Mechanism (압력평형메커니즘을 이용한 초소형 수동형 기체 압력조정기)

  • Lee, Ki-Jung;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.138-143
    • /
    • 2010
  • This paper presents the analysis, the fabrication and the test results of a micro passive gas pressure regulator to keep the outlet pressure costant even for a widely-varying inlet pressure. This device is to regulate the outlet pressure according to the applied reference pressure based on the pressure balancing mechanism of the structure including a membrane and a valve. This regulator consists of four layers; a bulk-micromachined silicon substrate, a sandblasted glass substrate, a PDMS valve seat layer and a glass valve layer. The device size is $10\times13\times1.7 mm3$. The device was fabricated by micromachining. The characteristic of the device was analyzed and tested. The characteristic of the fabricated pressure regulator is similar to that obtained from the analysis. The pressure regulator of this paper is feasible for portable systems and miniature drug delivery systems.

A Study on the Characteristics of High Pressure Regulator for Vehicle CNG (자동차 CNG용 고압 레귤레이터의 특성해석에 관한 연구)

  • Kim, Byeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5997-6003
    • /
    • 2011
  • To increase the driving distance of a natural gas vehicle, the high pressure of fuel charge is necessary and the development of the device reducing the pressure to suitable pressure for fuel of high pressure. In this study, Pressure characteristics at the pressure regulator, which is very important for gas supply systems for vehicles, are investigated. Numerical simulations are carried out to quantify pressures at regulators for several flow rates and to investigate pressure drop, hysteresis losses at some parts in the pressure regulator. Moreover, this paper presents a new kind of hydraulic simulation which is composed of CNG regulator. Lastly, experiments are carried out to verify the effectiveness of the prosed mathematical simulation with various regulator components as in real working condition.

Numerical Analysis for Evaluation of Ejection Capacity Relationship of Safety Valves in Pressure Regulating Station(I) - Flow Analysis and Mass Flow Rate Verification of Pressure Regulator - (정압기지내의 안전밸브 분출용량 관계식 검증을 위한 유동해석(I) - 정압기 유동 해석 및 질량 유량 검증 -)

  • Gwon, Hyuk-Rok;Roh, Kyung-Chul;Kim, Young-Seop;Lee, Seong-Hyuk
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.99-104
    • /
    • 2008
  • Gas pressure regulators in pressure regulating station reduce high-pressure gas in a process line to a lower. Gas pressure regulators are not flow control devices, they are used to control delivery pressure only. For the safety of pressure regulating station, it is essential to study flow regime and characteristics of a safety valves that is connected to a pressure regulator. For this, it is necessary to understand flow characteristics and the flow rate of upstream component part such as gas pressure regulators in regulating station. In the present study, numerical analysis of flow characteristics and the mass flow rate of a pressure regulator is conducted under the several inlet, outlet conditions and open rates. Then, the numerical result of the mass flow rate is verified with experimental equation from manufacture of pressure regulator. Consequently, the numerical result is comparatively good agreement with values from experimental equation.

  • PDF

A Study on Modeling of the Pneumatic Part in a Gas Blow-Down System Including Pressure Regulator and Pipe-Line Characteristics (압력조절밸브와 배관 특성을 포함한 유도무기용 기체 블로우다운 시스템의 공압부 모델링에 관한 연구)

  • Park, Youngwoo
    • Journal of Drive and Control
    • /
    • v.14 no.3
    • /
    • pp.32-39
    • /
    • 2017
  • In this study, a mathematical model of the pneumatic part in a gas blow-down system is proposed. The mathematical model consists of four major parts: pressure vessel, reservoir, pressure regulator and pipe-line. To ensure accuracy in long-time simulations, heat transfer between gas and pressure vessel is considered. The model is validated by comparing simulation results with experimental data. Experiments are conducted on the ground, where free convection can be assumed. Simulation results indicate the proposed model can accurately describe behavior of a gas blow-down system. Therefore, it may be used for design and analysis of similar systems with a slight modification.

A Study on the Strength Safety of a Gas Valve (가스밸브의 강도안전성에 관한 연구)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.60-63
    • /
    • 2018
  • This paper presents the FEM analysis results on the strength safety of a gas valve for a LPG cylinder. Based on the FEM analysis, the maximum von Mises stress on the boundary zone between a safety valve and the upper area of the thread is 99.2 MPa for the supplied gas pressure of 3.5 MPa in which the gas valve is fully opened. The maximum von Mises stress of 99.2 MPa is considered as safety value, because that value is lower than the yield stress of a brass material. In this case, the maximum deformation at the upper right part of the pressure regulator is 0.002mm. The maximum deformation zone is not a meaning part of the sealing part such as an O-ring or a diaphragm of a gas valve and a pressure regulator. The proposed hybrid gas valve model in which is integrated with a conventional cut-off valve and a pressure regulator is recommended as a gas leakage free mechanism and minimized compact size for a LPG cylinder.

A Study on the Pressure Control Process of Gas Regulators through Numerical Analysis (수치해석을 통한 가스 레귤레이터의 압력제어 프로세스 고찰)

  • Jung, Jun-Hwan;Nam, Chung-Woo;Kim, Min-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.37-51
    • /
    • 2021
  • The pressure drop phenomenon that occurs when the same flow rate is supplied to the gas regulator was analyzed. The regulator moves the position of the piston through the interaction of the force acting on the upper and lower parts of the piston and the spring tension to release the pressure of a specific range in a specific environment as constant pressure, thereby maintaining the pressure. The flow characteristics and pressure control process of the regulator were investigated through a numerical analysis technique as the volume of the fluid inside the regulator changed. As the gap between the piston and the piston seat decreased, the pressure drop increased and the flow velocity increased. It was verified through numerical analysis that the piston was positioned at 0.12mm under the same conditions as the pressure-flow test (inlet pressure 3MPa, outlet pressure 0.8MPa, flow rate 70kg/h).