• Title/Summary/Keyword: Gas pulsation

Search Result 73, Processing Time 0.026 seconds

Study on self-pulsation characteristics of gas centered shear coaxial injector for supercavitating underwater propulsion system

  • Yoon, Jung-Soo;Chung, Jae-Mook;Yoon, Young-Bin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.286-292
    • /
    • 2011
  • In order to design a shear coaxial injector of solid particles for underwater propulsion system, basic experiments on gas-liquid shear coaxial injector are necessary. In the gas-liquid coaxial injector self-pulsation usually occurs with an intense scream. When self-pulsation occurs, mass flow rate oscillation and intense scream are detected by the interactions between the liquid and gas phase. Self-pulsation must be suppressed since this oscillation may cause combustion instabilities. Considerable research has been conducted on self-pulsation characteristics, but these researches are conducted in swirl coaxial injector. The main objective of this research is to understand the characteristics of self-pulsation in shear coaxial injector and reveal the mechanism of the phenomenon. Toward this object, self-pulsation frequency and spray patterns are measured by laser diagnostics and indirect photography. The self-pulsation characteristics of shear coaxial injector are studied with various injection conditions, such as the pressure drop of liquid and gas phase, and recess ratio. It was found that the frequency of the self-pulsation is proportional to the liquid and gas Reynolds number, and proportional to the L/d.

Effects of Gas Pulsation in Piping Lines on Compressor Performance in a Double-Acting Reciprocating Compressor (복동식 왕복동 압축기의 연결 배관계 가스 맥동이 압축기 성능에 미치는 영향)

  • 김현진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.448-456
    • /
    • 2000
  • For piping line systems associated with a double-acting reciprocating compressor, an analytical study has been made on the gas pulsation in piping lines and its effects on the compressor performance. The transfer matrix which relates mass flow rate to the gas pulsation downstream of the compressor valve can be obtained by an acoustic model for piping line systems which include snubber and after-cooler with the aid of four pole theory Since mass flow rate is affected by the pressure pulsation in the pressure plenum, while the latter being determined by the former, iteration in the calculation should be made for convergence. The gas pulsation in pipings is found to have an adverse effect on the compressor's performance, and the magnitude of the gas pulsation can be lowered by increasing snubber volume.

  • PDF

A Study on the Gas Pulsation in a Rotary Compressor (로타리 압축기의 가스맥동에 관한 연구)

  • 김현진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.648-655
    • /
    • 2002
  • For a discharge system of rotary compressor, analytical investigation on the discharge gas pulsation has been carried out. With the aid of four pole theory, acoustic impedance of the discharge system composed of muffler and cavities on both sides of motor with gas passages between them can be calculated using discrete acoustic elements described by transfer matrices, yielding the relationship between discharge mass flow rate and gas pulsation at the discharge port. This method of predicting the gas pulsation was validated by measurement data. Effects of change in discharge muffler geometries on the gas pulsation also were investigated, demonstrating that this method can be used for muffler design.

Effects of gas pulsation in the suction line of a hermetic reciprocating compressor on th compressor performance (밀폐형 왕복동 압축기에서 흡입라인 가스맥동이 압축기 성능에 미치는 영향)

  • Lee, Yong-Ho;Kim, Hyun-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.404-409
    • /
    • 2007
  • For a hermetic reciprocating compressor, it has been known that the gas pulsation in the suction line affects the compressor performance, and suction muffler design has been focused on both of noise reduction and minimum pressure drop across the muffler. Some studies have been carried out on the mutual interaction between the gas pulsation and the cylinder pressure to investigate some supercharging effects, but their efforts were limited on rather simple geometries. In this paper, interaction of the gas pulsation in the compressor suction line with cylinder pressure via suction valve motion has been calculated; for the gas pulsation analysis, modeling of Helmholtz resonators in series was used, and for cylinder pressure calculation, energy equations was set up for the gas inside the cylinder. For demonstration of this calculation method, four different types of suction line configurations for a hermetic reciprocating compressor were compared in terms of compressor performance and gas pulsation level.

  • PDF

Gas pulsation analysis of large reciprocating compressor in parallel operation (병렬 운전되는 대형 왕복동 압축기의 가스맥동 분석)

  • Kim, Seong-Jun;Kim, Hyun-Cheol;Kim, Hyun-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.910-915
    • /
    • 2009
  • For large reciprocating compressors in parallel operation, an analytical study has been carried out on the gas pulsation in associated discharge piping lines. Since the pressure pulsation at a valve, valve dynamics, and the gas flow rate through the valve are interrelated, affecting one another, these need to be solved simultaneously. Acoustic transfer matrix method, which relates acoustic pressure and velocity at one location to those at another location, has been adopted to calculate the effect of the gas flow at one valve location on the gas pulsation at other valve locations.

  • PDF

Gas Pulsation Analysis of Large Reciprocating Compressors in Parallel Operation (병렬 운전되는 대형 왕복동 압축기의 가스맥동 분석)

  • Kim, Seong-Jun;Kim, Hyun-Jae;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.2
    • /
    • pp.97-103
    • /
    • 2010
  • For large reciprocating compressors in parallel operation, an analytical study has been carried out on the gas pulsation in associated discharge piping lines. Since the pressure pulsation at a valve, valve dynamics, and the gas flow rate through the valve are interrelated, affecting one another, these need to be solved simultaneously. Acoustic transfer matrix method, which relates acoustic pressure and velocity at one location to those at another location, has been adopted to calculate the effect of the gas flow at one valve location on the gas pulsation at other valve locations.

Analytical Study on the Discharge Gas Pulsation in a Twin Rotary Compressor (트윈 로타리 압축기의 토출 가스 맥동 해석)

  • Kim, Hyun-Jin;Ahn, Jong-Min;Cho, Kwang-Myoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.697-703
    • /
    • 2003
  • For a single stage two cylinder rotary compressor, an analytical study has been made on the discharge gas pulsation. Discharge system of the twin rotary compressor consists of lower and upper mufflers and connecting passage holes between them, and cavities on both sides of the motor and passages between them. Acoustic modeling for the discharge system by transfer matrix method gives acoustic impedances at discharge valves so that gas pulsation at the valve sections can be obtained from discharge mass velocity. Since the mass velocity and the pressure pulsation at the valves are affected by each other, iteration should be made for convergence. Gas pulsations at other sections can also be calculated by using transfer matrix.

  • PDF

A study about reducing Turbocharger Pulsation of 3 cylinder engine (3 기통 엔진의 터보 차저 맥동 저감에 대한 연구)

  • Seo, Kwanghyun;Cho, Sungyong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.667-669
    • /
    • 2014
  • Development of 3 cylinder turbo charger engine is increasing due to engine down-sizing, cost reduction and emission regulations. However, 3 cylinder engine makes higher Exhaust manifold gas pressure(P3) pulsation than 4 cylinder engine and it generate boosting air with high pulsation. The mechanical waste-gate turbocharger just controlled by the boosting air has higher movement because of this high pulsation boosting air. This causes high vibrations to wasted gate and accelerate wear of the linkage system. So we need to understand out of the exhaust gas pressure pulsation changed by turbocharger compressor pressure(P2) Pulsation. In this study, we discuss how to prevent to abnormal movement of the turbo actuator by stabilized P2 Pulsation.

  • PDF

SELF-PULSATION CHARACTERISTICS OF A SWIRL COAXIAL INJECTOR WITH VARIOUS INJECTION AND GEOMETRIC CONDITIONS

  • Im, Ji-Hyuk;Kim, Dong-Jun;Yoon, Young-Bin;Bazarov, V.
    • Journal of ILASS-Korea
    • /
    • v.10 no.3
    • /
    • pp.29-37
    • /
    • 2005
  • The spray and acoustic characteristics of a gas/liquid swirl coaxial injector are studied experimentally. The self-pulsation is defined as a pressure and flow rate oscillations by a time-delayed feedback between liquid and gas phase. Self-pulsation has strong influences on atomization and mixing processes and accompanies painful screams. So. the spray and acoustic characteristics are investigated. Spray patterns are observed by shadow photography technique in order to determine the onset of self-pulsation. And self-pulsation boundary with Injection conditions and recess length is get. To measure the frequency of the spray oscillation. oscillation of the laser intensity which passes through spray is analyzed by Fast Fourier Transform. For acoustic tests, a PULSE System was used. Acoustic characteristics of a swirl coaxial injector are investigated according to the injection conditions. such as the pressure drop or the liquid and gas phase. and injector geometries. such as recess length and gap size between the inner and outer injector. Front the experimental results. the increase of recess length leads to the rapid increase of the sound pressure level. And as the pressure drop of the liquid phase increases. the frequency of the self?pulsation shifts to the higher frequency. The frequency of spray oscillations is the same as that of the acoustic fields by self-pulsation.

  • PDF

Effect of Gas Density on Self-Pulsation in Liquid-Gas Swirl Coaxial Injector (액체-기체 와류동축형 분사기의 자기-맥동에 대한 기체 밀도의 영향)

  • Ahn, Jonghyeon;Kang, Cheolwoong;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.134-143
    • /
    • 2022
  • When a recess is applied to a swirl coaxial injector that uses liquid and gas propellants, a self-pulsation phenomenon in which the spray oscillates at regular intervals may occur. The phenomenon is caused by the interaction between the liquid and gas propellants inside the injector recess region. The propellants' kinetic energies are expected to affect significantly the spray oscillation. Therefore, cold-flow tests using helium as a gas-simulating propellant were conducted and compared with the results of the previous study using air. Dynamic pressure was measured in the injector manifold and frequency characteristics were investigated through the fast Fourier transform analysis. In the experimental environment, the helium density was about seven times lower than the air density. Accordingly, the intensity of pressure fluctuations was confirmed to be greater when air was used. At the same kinetic energy condition, the perturbation frequency was almost identical in the low flow rate conditions. However, as the flow rate increased, the self-pulsation frequency was higher when helium was used.