• Title/Summary/Keyword: Gas production

Search Result 2,707, Processing Time 0.034 seconds

Gibberellin A7 production by Aspergillus tubingensis YH103 and cultural characteristics of endophytic fungi isolated from Tetragonia tetragonoides in Dokdo islands (독도 번행초에서 분리된 내생균류의 배양적 특성과 Aspergillus tubingensis YH103의 gibberellin A7의 생산)

  • You, Young-Hyun;Park, Jong Myong;Lim, Sung Hwan;Kang, Sang-Mo;Park, Jong-Han;Lee, In-Jung;Kim, Jong-Guk
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.32-39
    • /
    • 2016
  • Coastal plant species Tetragonia tetragonoides (Pall.) Kuntze native to the Dokdo islands was sampled and then 17 endophytic fungi were purely isolated based on morphological differences. The fungal isolates were characterized by their growth properties under NaCl concentration or pH gradient. Culture filtrates of the 17 fungal isolates were treated to Waito-c rice (WR) seedlings for verifying plant growth-promoting activity. As the results, YH103 strain showed the highest plant growth-promoting activity among them. Phylogenetic analysis of the isolates was done by the maximum likelihood method based on partial internal transcribed spacer region (ITS region: contaning ITS1, 5.8S, and ITS2), beta-tubulin (BenA), and calmodulin (CaM) gene sequences. Chromatographic analysis of the strain YH103 culture filtrate showed the existence of gibberellins ($GA_4$, $GA_7$, $GA_8$, and $GA_{19}$). Finally, the strain YH103 was identified as Aspergillus tubingensis by microscopic observation and molecular analysis and, to our knowledge, this is the first report of GAs producing A. tubingensis.

Global Trend of CO2 Capture Technology Development (이산화탄소 포집기술 국외 기술개발 동향)

  • Baek, Jeom-In
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.143-165
    • /
    • 2016
  • The amount of greenhouse gas emission reduction based on INDCs (Intended Nationally Determined Contributions) submitted to UN by each party is not sufficient to achieve the Paris Agreement's aim to "hold the increase in the global average temperature to well below $2^{\circ}C$ above pre-industrial levels and to pursue efforts to limit the temperature increase to $1.5^{\circ}C$" which was determined in the $21^{st}$ Conference of the Parties to the UNFCCC (COP 21). Accordingly, the emission reduction target of each party will be revised for the $2^{\circ}C$ goal. Among the several options to reduce the carbon emission, CCS (Carbon Capture and Storage) is a key option to curb $CO_2$ emissions from large emission sources such as fossil-based power plants, cement plants, and steel production plants. A large scale CCS demonstration projects utilizing $1^{st}$ generation $CO_2$ capture technologies are under way around the world. It is anticipated, however, that the deployment of those $1^{st}$ generation $CO_2$ capture technologies in great numbers without government support will be difficult due to the high capture cost and considerable increase of cost of electricity. To reduce the carbon capture cost, $2^{nd}$ and $3^{rd}$ generation technologies are under development in a pilot or a bench scale. In this paper, current status of large scale CCS demonstration projects and the $2^{nd}$ and $3^{rd}$ generation capture technologies are summarized. Novel capture technologies on wet scrubbing, dry sorbent, and oxygen combustion are explained in detail for all capture areas: post-combustion capture, pre-combustion capture, and new combustion technologies.

Effect of Sludge Conditioner on Dewaterability of Sludge Produced from the Anaerobic Digestion of Food Waste (음식물 쓰레기의 혐기성 소화 슬러지의 응집 및 탈수 특성에 미치는 영향)

  • Park, Jong-Bu;Choi, Sung-Su;Park, Seung-Kook;Hur, Hyung-Woo;Han, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.104-110
    • /
    • 2001
  • In this study, the effect of physico-chemical variables on sludge conditioning was determined to enhance dewaterability of effluent produced from the thermophilic anaerobic digestion of food waste. The gas production rate and methane content during the anaerobic digestion of food waste were $1.1m^3/kg$ VS and 63%, respectively, and the biodegradability of volatile solids was 87.5%. The concentrations of CODcr, TKN and TP of effluent from digestor were 18,500mg/L, 2,800mg/L, and 582mg/L, respectively. At the jar test to screen the flocculant for the dewatering of effluent from digestor, $FeCl_3$ and strong cationic polymer were effective on making flocs in the effluent. The condition of flocculation of effluent were 500mg/L of $FeCl_3$ and 50-100 mg/L of strong cationic polymer, respectively. As the result of measuring of dewaterability potential of effluent to determine the mixing ratio between $FeCl_3$ and polymer by capillary suction time(SCT), optimum condition was 500mg/L of $FeCl_3$ and 80mg/L of strong cationic polymer.

  • PDF

Study on the Thermal Characteristics of Concrete Using Micro Form Admixture (마이크로기포제를 사용한 콘크리트의 열적 특성에 관한 연구)

  • Park, Young Shin;Kim, Jung Ho;Jeon, Hyun Kyu;Seo, Chee Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2013
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. So, various actions to reduce greenhouse gas exhaustion and energy consumption have been prepared by world developed countries. Our government has also been trying to seek energy control methods for houses and buildings by proclaiming political polices on low-carbon green growth and construction and performance standards for environment-friendly housing. The energy consumption by buildings approximately reaches 25% of total korea energy consumption, and the increasing rate of energy consumption by buildings is stiffer than the rate by the other industries. The greatest part in the buildings of the energy consumption is building facade. While lots of research projects for reducing energy consumption of the facade have been conducted, but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research presents here a study to improve the insulation property of structural concrete formed by micro form admixture (MFA) with experimentally reviewing the physical, mechanical and thermal characteristics of the concrete. As the results of this experiment, in the case of concrete mixed with MFA, slump loss has been improved. As the mixing ratio of MFA increases, the compressive strength is decreased and thermal conductivity is increased. Also it was found that water-cement ratio increases, the compressive strength is decreased and thermal conductivity is increased. but, there was not big influence by the change of fine aggregate ratio.

The current status in the silicon crystal growth technology for solar cells (태양전지용 규소 결정 성장 기술 개발의 현황)

  • Lee, A-Young;Lee, Dong-Gue;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.47-53
    • /
    • 2014
  • Three kinds of crystalline silicon have been used for the solar cell grade. First of all, single crystalline silicon is the main subject to enhance the production yield. Most of the efforts are focused on the control of the melt-crystal interface shape affected by the crystal-crucible rotation rate. The main subject in the multi-crystalline silicon ingot is the contamination control. Faster Ar gas flow above the melt surface will lower the carbon contamination in the crystal. And also, twin boundary electrically inactive is found to be more effective than grain boundary for the improvement of the MCLT. In the case of mono-like silicon material, propagation of the multi-crystalline silicon growing from the inner side crucible is the problem lowering the portion of the single crystalline part at the center of the ingot. Crystal growing apparatus giving higher cooling rate at the bottom and lower cooling rate at the side crucible was suggested as the optimum solution obtaining higher quality of the mono-like silicon ingot. Proper application of the seeds at the bottom of the crucible would be one of the solutions.

Flowability and Compressive Strength of Cementless Alkali-Activated Mortar Using Blast Furnace Slag (고로슬래그를 사용한 무시멘트 알칼리 활성 모르타르의 유동성과 압축강도)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Kang, Hyun-Jin;Jeon, Yong-Su
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.63-71
    • /
    • 2011
  • Portland cement production is under critical review due to high amount of $CO_2$ gas released to the atmosphere. Attempts to increase the utilization of a by-products such as fly ash and ground granulated blast-furnace slag to partially replace the cement in concrete are gathering momentum. But most of by-products is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. In this study, we investigated the influence of alkali activator and superplasticizer on the flowability and compressive strength of the alkali-activated mortar in oder to develop cementless alkali-activated concrete using blast furnace slag. In view of the results, we found out that the type and mixture ratio of alkali activator, the type and adding order of superplasticizer results to be significant factors. When cementless alkali-activated mortar using blast furnace slag manufactured with 1:1 the mass ratio of 9M NaOH and sodium silicate, and added superplasticizer before alkali activator in the mixer, we can be secured workability with 180 mm of flow during 1 hours and compressive strength of about 50 MPa under $20^{\circ}C$ curing condition at age of 28days.

  • PDF

Comparison of the Quantulus 1220 and 300SL Liquid Scintillation Counters for the Analysis of 222Rn in Groundwater

  • Kim, Hyuncheol;Jung, Yoonhee;Lee, Wanno;Choi, Guen-Sik;Chung, Kun Ho;Kang, Mun Ja
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.395-401
    • /
    • 2016
  • Background: Liquid scintillation counters (LSCs) are commonly used as an analytical method for detecting $^{222}Rn$ in groundwater because they involve a simple sample pretreatment and allow high throughout with an autosampler. The Quantulus 1220 is the best-selling LSC in Korea, but its production was stopped. Recently, a new type of LSC, the 300SL, was introduced. In this study, the 300SL was compared with the Quantulus 1220 in order to evaluate the ability of each apparatus to detect $^{222}Rn$ in groundwater. Materials and Methods: The Quantulus 1220 and 300SL were used to detect the presence of $^{222}Rn$. Radon gas was extracted from a groundwater sample using a water-immiscible cocktail in a LSC vial. The optimal analytical conditions for each LSC were determined using a $^{222}Rn$ calibration source prepared with a $^{226}Ra$ source. Results and Discussion: The optimal pulse shape analysis level for alpha and beta separation was 80 for the Quantulus 1220, and the corresponding pulse length index was 12 in the 300SL. The counting efficiency of the Quantulus 1220 for alpha emissions was similar to that of the 300SL, but the background count rate of the Quantulus 1220 was 10 times lower than that of the 300SL. The minimum detectable activity of the Quantulus 1220 was $0.08Bq{\cdot}L^{-1}$, while that of the 300SL was $0.20Bq{\cdot}L^{-1}$. The analytical results regarding $^{222}Rn$ in groundwater were less than 10% different between these LSCs. Conclusion: The 300SL is an LSC that is comparable to the Quantulus 1220 for detecting $^{222}Rn$ in groundwater. Both LSCs can be applied to determine the levels of $^{222}Rn$ in groundwater under the management of the Ministry of Environment.

Comparative Bioreactor Studies in Terms of Oxygen Transfer between Suspended and Immobilized Fungal Systems for Cyclosporin A Fermentation (Cyclosporin A 생산을 위한 액체배양과 고정화배양의 생물반응기에서의 산소전달 비교 연구)

  • 전계택
    • KSBB Journal
    • /
    • v.9 no.2
    • /
    • pp.211-223
    • /
    • 1994
  • In fermentations with a 4-liter stirred tank bioreactor, a better than two-fold enhancement of the gas-liquid mass transfer coefficient$(k_La)$ in the celite-immobilized fungal cultures of Tolypocladium in flatum over the parallel conventional free-cell was observed at identical biomass concentrations, despite the higher specific oxygen uptake rate of the immobilized fungi during exponential growth. As a result oxygen sufficient conditions, i. e., dissolve oxygen(D.O.) concentrations exceeding 75% air saturation, could be maintained throughout exponential growth period of the immobilized culture, in contrast to the suspended fungal culture, whose D.O. levels fell below 50% air saturation. A linear monotonic dependence of $k_La$ upon impeller agitaion rate was found for both immobilized and conventional cultivation modes over a range of 250 to 550rpm, the slope being a function of biomass concentration for the free but not for the immobilized cell system In contrasts oxygen transfer rate was a much weaker function of aeration rate up to about 2.5 vvm for both culture configurations. Above this level, aeration rate had no further effect on the mass transfer. In addition, the immobilized cultures sustained good morphological and physiological states, leading to almost two times higher cyclosporln A (CyA) productivity overt the parallel free cell system. These experiments suggest that the celite-immobilized fungal system in a stirred tank reactor has considerable promise for scaling up cyclosporin A production in terms of high-density cultivation.

  • PDF

A study on the establishment of domestic criteria through analysis of shield TBM requirements in overseas ITB (Invitation to Bid) (해외 쉴드TBM 입찰안내서 분석을 통한 국내 발주 기준 정립에 관한 연구)

  • Kim, Ki-Hwan;Kim, Hyouk;Mun, Cheol-Hwa;Kim, Young-Hyu;Kim, Dong-Ho;Lee, Jae-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.985-997
    • /
    • 2017
  • In many countries, most of the tunneling works have been ordered by the shield TBM, and also Korean companies are actively bidding and execute in this project. In case of Korea, refurbished machines are mainly using in power cable, gas pipelines, and water and sewage tunnel. Also in metro projects, shield TBM of over diameter 7m is required mainly by using brand new machine. Since the shield TBM is not easy to change once it is produced, it is necessary for the client to provide sufficient information on the production conditions so as to satisfy various characteristics of the construction. In this study, to manufacturing optimal shield TBM, the Client's TBM requirements of tunnel construction in Hong Kong and UK was analyzed and compared with the domestic requirements. The results are expected to provide as client's guidelines for bidding stage and manufacturing for shield TBM tunneling in Korea in the future.

A Study on Performance Characteristics of the Developed Fuel Pump for a Single-cylinder Four-stroke Agricultural Diesel Engine (단기통 4행정 농용 디젤기관의 개발 연료펌프 성능특성에 관한 연구)

  • Bae, Myung-whan;Lee, Sang-hae;Jung, Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.756-761
    • /
    • 2016
  • The objective of this study is to design and manufacture a fuel pump with the plunger diameter of 4 mm and stroke of 7 mm that can be mounted in a small single-cylinder four-stroke agricultural diesel engine, and to investigate the performance characteristics of the pump. The combustion pressure in a cylinder was reproduced by forming the back pressure of 1, 6, 11, 16 and 21 bar with a nitrogen gas in the home-manufactured modeling cylinder. In the experiment, the discharge pressure was measured at the spot of 1 cm away from the discharge port of a developed fuel pump. The delivery pressure and delivery flow rate were measured at the spot of 30 cm away from the discharge port of the pump, and the pump efficiency was calculated. The pump motor speed was changed from 600 to 800, 1000, 1200 and 1400 rpm. It is found that the delivery feed rate of fuel pump is increased as the rotational speed is raised, and is decreased as the back pressure, compression pressure in the cylinder, is increased. Also, the pump efficiency is reduced as the rotational speed and back pressure are increased.