• Title/Summary/Keyword: Gas lines

Search Result 393, Processing Time 0.032 seconds

A Fault Effect to Induced Voltage of Gas Pipeline in Transmission Systems (송전계통에서 고장에 따른 Gas Pipeline 유도전압 분석)

  • Kim, Hyun-Soo;Rhee, Sang-Bong;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1720-1725
    • /
    • 2008
  • Because of the continuous increasing of energy consumption, metallic pipelines are widely used to supply services to customers such as gas, oil, water, etc. Most common metallic pipelines are underground and are now frequently being installed in nearby electric power lines. In recent years, buried gas pipeline close to power lines can be subjected to hazardous induction effects, especially during single line to ground faults. because it can cause corrosion and it poses a threat to the safety of workers responsible for maintenance. Accordingly, it is necessary to take into consideration for analysis of induced voltage on gas pipelines in transmission lines. This paper analyzed the induced voltage on the gas pipelines due to the 154kV transmission lines in normal case and in different faulty case conditions using EMTP (Electro-Magnetic Transients Program).

Effect of Metallic Particles on E-field Enhancement in Extra High Voltage Gas-insulated Transmission Lines

  • Rao, M. Mohana;Satyanarayana, S.;Kumar, S. Vinay;Jain, H.S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.631-636
    • /
    • 2010
  • Gas-insulated transmission lines (GITL) are valued as technological solutions in hydro-power stations due to their enormous power handling capabilities. The performance of GITL is a function of the size of metallic particles inside the gas-insulated chamber. Electrostatic field (E-field) enhancement is a common phenomenon in gas-insulated lines due to these metallic particles. In this study, the E-field enhancement factor is calculated by considering metallic particles at various locations in the gas-insulated line/bus section, such as high-tension (HT) conductor, high-voltage shields, support insulator, and inner surface of grounded enclosure. For this purpose, a two-dimensional model based on finite element (FE) method is developed. The length of the metallic particle is in the range of 1 to 10 mm while the diameter is between 1 to 3 mm. E-field enhancement is also computed for various particle configurations of the gas-insulated system, with focus on dielectric coating made of epoxy on HT conductor and inner surface of grounded enclosure.

Improvement of Cooling Technology through Atmosphere Gas Management

  • Renard, Michel;Dosogne, Edgar;Crutzen, Jean-Pierre;Raick, Jean-Marc;Ma, Jia Ji;Lv, Jun;Ma, Bing Zhi
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.217-222
    • /
    • 2009
  • The production of advanced high strength steels requires the improvement of cooling technology. The use of high cooling rates allows relatively low levels of expensive alloying additions to ensure sufficient hardenability. In classical annealing and hot-dip galvanizing lines a mixing station is used to provide atmosphere gas containing 3-5% hydrogen and 97-95% nitrogen in the various sections of the furnace, including the rapid cooling section. Heat exchange enhancement in this cooling section can be insured by the increased hydrogen concentration. Drever International developed a patented improvement of cooling technology based on the following features: pure hydrogen gas is injected only in the rapid cooling section whereas the different sections of the furnace are supplied with pure nitrogen gas; the control of flows through atmosphere gas management allows to get high hydrogen concentration in cooling section and low hydrogen content in the other furnace zones. This cooling technology development insures higher cooling rates without additional expensive hydrogen gas consumption and without the use of complex sealing equipments between zones. In addition reduction in electrical energy consumption is obtained. This atmosphere control development can be combined with geometrical design improvements in order to get optimised cooling technology providing high cooling rates as well as reduced strip vibration amplitudes. Extensive validation of theoretical research has been conducted on industrial lines. New lines as well as existing lines, with limited modifications, can be equipped with this new development. Up to now this technology has successfully been implemented on 6 existing and 7 new lines in Europe and Asia.

Investigating the relation between AGN gas metallicity and their host galaxy stellar metallicity using a sample of local Seyfert 1 galaxies

  • Shin, Jae-Jin;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.72.1-72.1
    • /
    • 2011
  • We investigate the relation between AGN gas metallicity and their host galaxy stellar metallicity using a sample of local Seyfert 1 galaxies. Stellar metallicity is measured from stellar absorption lines while AGN gas metallicity is derived from the flux ratios of UV emission lines. We use a high quality spectra obtained from the Lick AGN Monitoring Project, to obtain pure host galaxy spectra based on the spectral decomposition analysis, leading to accurate measurements of the Mg2 (5175) and Fe (5270) indices. In the case of AGN gas metallicity, we measure the ratio of NV1240 to CIV1549 lines using UV spectra from the archival IUE and HST STIS data. We will present the results of metallicity measurements and comparison between AGN and stellar metallicity, and discuss the implications of the results.

  • PDF

An Analysis on the Overvoltage in Gas Insulated Transmission Lines with EMTP/ATPDraw (EMTP/ATPDraw를 이용한 가스절연송전선로(GIL)의 과전압 분석)

  • Park, Hung-Sok;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.999-1004
    • /
    • 2011
  • Nowadays, it is becoming difficult to secure a transmission line route when a new transmission line is constructed due to social environment and resident complaints. As existing urban areas are expanded and new cities are constructed, the necessity of high-capacity underground power transmission has been increasing because of load concentration in downtown areas. In North America, Europe and Japan, the research has been carried out for 2nd generation gas insulated transmission lines(GIL) which is more environmentally friendly and economical compared to previous GILs. The new GILs have been applied to real power systems from early 2000s. In South Korea, GIL is being considered as a possible solution for replacing 345kV high-capacity overhead transmission lines with underground transmission ones, so KEPCO is planning to develop and apply a new 362kV rated GIL underground transmission lines instead of overhead transmission lines. In this paper, the overvoltage generated at the combined transmission line adapting GIL was reviewed using EMTP.

SPATIALLY RESOLVED KINEMATICS OF GAS AND STARS IN HIDDEN TYPE 1 AGNS

  • Son, Donghoon;Woo, Jong-Hak;Eun, Da-In;Cho, Hojin;Karouzos, Marios;Park, Songyeon
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.5
    • /
    • pp.103-115
    • /
    • 2020
  • We analyze the spatially resolved kinematics of gas and stars for a sample of ten hidden type 1 AGNs in order to investigate the nature of their central sources and the scaling relation with host galaxy stellar velocity dispersion. We select our sample from a large number of hidden type 1 AGNs, which are identified based on the presence of a broad (full width at half maximum ≳1000 km s-1) component in the Hα line profile and which are frequently mis-classified as type 2 AGNs because AGN continuum and broad emission lines are weak or obscured in the optical spectral range. We used the Blue Channel Spectrograph at the 6.5-m Multiple Mirror Telescope to obtain long-slit data with a spatial scale of 0.3 arcsec pixel-1. We detected broad Hβ lines for only two targets; however, the presence of strong broad Hα lines indicates that the AGNs we selected are all low-luminosity type 1 AGNs. We measured the velocity, velocity dispersion, and flux of stellar continuum and gas emission lines (i.e., Hβ and [O III]) as a function of distance from the center. The spatially resolved gas kinematics traced by Hβ or [O III] are generally similar to the stellar kinematics except for the inner center, where signatures of gas outflows are detected. We compare the luminosity-weighted effective stellar velocity dispersions with the black hole masses and find that our hidden type 1 AGNs, which have relatively low back hole masses, follow the same scaling relation as reverberation-mapped type 1 AGN and more massive inactive galaxies.

Effects of Gas Pulsation in Piping Lines on Compressor Performance in a Double-Acting Reciprocating Compressor (복동식 왕복동 압축기의 연결 배관계 가스 맥동이 압축기 성능에 미치는 영향)

  • 김현진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.448-456
    • /
    • 2000
  • For piping line systems associated with a double-acting reciprocating compressor, an analytical study has been made on the gas pulsation in piping lines and its effects on the compressor performance. The transfer matrix which relates mass flow rate to the gas pulsation downstream of the compressor valve can be obtained by an acoustic model for piping line systems which include snubber and after-cooler with the aid of four pole theory Since mass flow rate is affected by the pressure pulsation in the pressure plenum, while the latter being determined by the former, iteration in the calculation should be made for convergence. The gas pulsation in pipings is found to have an adverse effect on the compressor's performance, and the magnitude of the gas pulsation can be lowered by increasing snubber volume.

  • PDF

A Study of Stress off City Gas Pipe Attached on the Bridge (교량에 부착된 도시가스 배관의 응력에 관한 연구)

  • Lee Su-Kyung;Lim Bong-Gwan
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.3 s.32
    • /
    • pp.20-26
    • /
    • 2006
  • The survey team has conducted the on-the-site inspection of 53 bridges to which LNG gas pipelines are attached, to ascertain their level of safety, durability and any defect by adapting a method of computer data input process and precision analysis. In this way, we could estimate an effective corrective action on the defective gas pipelines found through this survey. Our survey team has analyzed carefully these 2 defective lines selectively out of 10 lines, which are considered to be most seriously weak. According to our elaborate analysis these two pipelines go over 70% of the set standard stress based on our Safety Manual Scale. We have taken corrective actions on these lines by repairing/replacing/obsolete damaged lines to ensure the distress of the bridges involved with the pipelines and could secure safety.

  • PDF

Characteristics of Structural Behavior of Unplasticized Polyvinyl Chloride (PVC-U) Pipe Buried Underground (지중매설 경질폴리염화비닐관의 구조적 거동)

  • Kim, Sun-Hee;Cheon, Jinuk;Kim, Eung-Ho
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.16-23
    • /
    • 2015
  • The industrialization and urbanization forced to increase the density of pipelines such as water supply, sewers, and gas pipelines. The materials used for the existing pipe lines are mostly composed of concretes and steels, but it is true that the development for more durable and efficient materials has been continued performed to produce long lasting pipe lines. Recently, underground pipes serve in diverse applications such as sewer lines, drain lines, water mains, gas lines, telephone and electrical conduits, culverts, oil lines, etc. In this paper, we present the result of investigation pertaining to the structural behavior of unplasticized polyvinyl chloride (PVC-U) flexible pipes buried underground. In the investigation of structural behavior such as a ring deflection, pipe stiffness, 4-point bending test, experimental and analytical studies are conducted. In addition, pipe stiffness is determined by the parallel plate loading tests and the finite element analysis. The difference between test and analysis is about 8% although there are significant variations in the mechanical properties of the pipe material. In addition, it was found by the 4-point bending test there is no problem in the connection between the pipes by coupler.

Analysis of the induced voltage on the GAS pipelines buried in parallel with 22.9kV distribution line (22.9kV 배전선로와 병행하는 가스배관의 유도성 유도전압 해석)

  • Lee, H.G.;Ha, T.H.;Bae, J.H.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.130-132
    • /
    • 2002
  • Because of the continuous growth of energy consumption and also the tendency to site power lines and pipelines along the same route, the close proximity of power lines and buried metallic pipelines has become more and more frequent. Therefore there has been and still is a slowing concern about possible hazards resulting from the influence of power lines on metallic pipelines. Underground pipelines that run parallel to or in close proximity to power lines are subjected to induced voltages caused by the time-varying magnetic fields produced by the power line currents. The induced electro- motive force cause currents circulation in the pipeline and voltages between the pipeline and surrounding earth. This paper analyzes the induced voltage on the gas pipelines buried in parallel with 22.9kV distribution lines. Their magnitude depends on the length of parallelism and on the distance between distribution lines and pipeline.

  • PDF