• 제목/요약/키워드: Gas leakage resistance

검색결과 31건 처리시간 0.029초

진공 슬러리 담금 코팅 공정에 의한 고체 산화물 연료전지용 박막 전해질막 제조에 관한 연구 (Fabrication Of Thin Electrolyte Layer For Solid Oxide Fuel Cell by Vacuum Slurry Dip-coating Process)

  • 손희정;임탁형;이승복;신동열;송락현;김성현
    • 한국수소및신에너지학회논문집
    • /
    • 제17권2호
    • /
    • pp.204-211
    • /
    • 2006
  • The electrolyte in the solid oxide fuel cell must be dense enough to avoid gas leakage and thin enough to reduce the ohmic resistance. In order to manufacture the thin and dense electrolyte layer, 8 mol% $Y_2O_3$ stabilized-$ZrO_2$ (8YSZ) electrolyte layers were coated on the porous tubular substrate by the novel vacuum slurry dip-coating process. The effects of the slurry concentration, presintering temperature, and vacuum pressure on the thickness and the gas permeability of the coated electrolyte layers have been examined in the vacuum slurry coating process. The vacuum-coated electrolyte layers showed very low gas permeabilities and had thin thicknesses. The single cell with the vacuum-coated electrolyte layer indicated a good performance of $495\;mW/cm^2$, 0.7 V at $700^{\circ}C$. The experimental results show that the vacuum dip-coating process is an effective method to fabricate dense thin film on the porous tubular substrate.

In-situ spectroscopic studies of SOFC cathode materials

  • 주종훈
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • In-situ X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies of SOFC cathode materials will be discussed in this presentation. The mixed conducting perovskites (ABO3) containing rare and alkaline earth metals on the A-site and a transition metal on the B-site are commonly used as cathodes for solid oxide fuel cells (SOFC). However, the details of the oxygen reduction reaction are still not clearly understood. The information about the type of adsorbed oxygen species and their concentration is important for a mechanistic understanding of the oxygen incorporation into these cathode materials. XPS has been widely used for the analysis of adsorbed species and surface structure. However, the conventional XPS experiments have the severe drawback to operate at room temperature and with the sample under ultrahigh vacuum (UHV) conditions, which is far from the relevant conditions of SOFC operation. The disadvantages of conventional XPS can be overcome to a large extent with a "high pressure" XPS setup installed at the BESSY II synchrotron. It allows sample depth profiling over 2 nm without sputtering by variation of the excitation energy, and most importantly measurements under a residual gas pressure in the mbar range. It is also well known that the catalytic activity for the oxygen reduction is very sensitive to their electrical conductivity and oxygen nonstoichiometry. Although the electrical conductivity of perovskite oxides has been intensively studied as a function of temperature or oxygen partial pressure (Po2), in-situ measurements of the conductivity of these materials in contact with the electrolyte as a SOFC configuration have little been reported. In order to measure the in-plane conductivity of an electrode film on the electrolyte, a substrate with high resistance is required for excluding the leakage current of the substrate. It is also hardly possible to measure the conductivity of cracked thin film by electrical methods. In this study, we report the electrical conductivity of perovskite $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ (LSC) thin films on yttria-stabilized zirconia (YSZ) electrolyte quantitatively obtained by in-situ IR spectroscopy. This method enables a reliable measurement of the electronic conductivity of the electrodes as part of the SOFC configuration regardless of leakage current to the substrate and cracks in the film.

  • PDF

배선 단선과 에어 누설에 관련된 자동차 ECS 시스템의 고장사례 고찰 (Study of Failure Examples of Automotive Electronic Control Suspension System Including Cases with Wiring Disconnection and Air Leakage)

  • 이일권;박종건;신명신;장주섭
    • Tribology and Lubricants
    • /
    • 제29권3호
    • /
    • pp.180-185
    • /
    • 2013
  • The purpose of this study was to analyze the tribological characteristics of the Electronic control suspension System in a car. In the first example, the cilp used to attach the front electronic control suspension(ECS) system's control actuator was fastened very tightly. Thus, the wire was cut because of continual rotation of the shock-up shover piston rod used to adjust the height of the car. This verified the disconnection phenomenon where wire damaged makes it impossible for the ECS system to send signal to the actuator. The second example, involved a minute hole that allowed gas to leak from the ECS system. As a result, the height of the car verified the down phenomenon. In the third example, the resistance of a wire measured at $0.21{\Omega}$, when the G sensor was disconnected from the system. This verified the system shutdown and lighting of the ECS warning lamp because of body interference caused by a slight pressure on the battery cover. Therefore, quality control is always necessary to ensure safety and durability of a car.

전기방식(電氣防蝕) 적용구간의 전위 미달 원인 분석 (An analysis on the Causes of the Under-Potential in the Electric Anti-corrosion Section)

  • 이은춘;류경만;윤한봉;신강욱;홍성택;이은웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 전기설비
    • /
    • pp.55-57
    • /
    • 2005
  • Along with the development of the industrial society, as the transportation of water which is the indirect capital of society and petroleum, gas, etc used as energy sources is rapidly increased. the underground material is being expanded. Like this, the pipes laid under the ground not only bring the corrosion to the land circumstances to reduce the life of the pipes, but also raise the social problem of leakage accidents and the economic loss by Pin Hole. By reason of this, for the purpose of protecting the corrosion of the underground material, we are constructing and operating the electrolytic protection facilities. In case of a region of which specific resistance is high, however, we are not keeping proper protection potential(that is -850mV) to get protection effects. In this study, for the water pipes that under-voltage phenomena occur in the protection potential, we made a spot survey on the under-voltage section and normal-voltage section, compared, analyzed each of the contents and examined the under-voltage causes of the protection potential.

  • PDF

LCC 컨버터 기반의 제논 플래시 램프 구동장치를 위한 시머회로 설계 (Design of a Simmer Circuit for Xenon Flash Lamp Driver Based on a LCC Converter)

  • 송승호;조찬기;박수미;박현일;배정수;장성록;류홍제
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.231-232
    • /
    • 2017
  • This paper describes the design and implementation of a 2.5kW (500V, 5A) simmer circuit that maintains the ionization of xenon gas inside the lamp. The design is based on a LCC resonant converter in continuous conduction mode (CCM) with above resonant frequency to take advantage of high power density from using parasitic elements such as the leakage inductance in a power transformer. In addition, since the converter has current source output characteristics, it is suitable for maintaining ionization of the lamp having the negative resistance load characteristic. To verify this converter design, PSpice modeling was performed. Finally, the developed simmer circuit is verified by a resistive load of rated performance and the Ionization maintenance operation of the xenon flash lamp.

  • PDF

졸-겔법을 이용한 고체산화물연료전지의 전해질 박막 제조 및 가스 투과도 (Preparation of Thin Film Electrolyte for Solid Oxide Fuel Cell by Sol-Gel Method and Its Gas Permeability)

  • 손희정;이혜종;임탁형;송락현;백동현;신동열;현상훈
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.827-832
    • /
    • 2005
  • In this study, thin electrolyte layer was prepared by 8YSZ ($8mol\%$ Yttria-Stabilized Zirconia) slurry dip and sol coating onto the porous anode support in order to reduce ohmic resistance. 8YSZ polymeric sol was prepared from inorganic salt of nitrate and XRF results of xerogel powder exhibited similar results $(99.2\pm1wt\%)$ compared with standard sample (TZ-8YS, Tosoh Co.). The dense and thin YSZ film with $1{\mu}m$ thickness was synthesized by coating of 0.7M YSZ sol followed by heat-treatment at $600^{\circ}C$ for 1 h. Thin film electrolyte sintered at $1400^{\circ}C$ showed no gas leakage at the differential pressure condition of 3 atm.

뿜어붙임멤브레인의 방수성능 및 염수저항성의 기초평가 (A preliminary study of watertightness and salt water resistance of spray-applied membrane)

  • 최순욱;강태호;장수호;이철호;김진태;최명식
    • 한국터널지하공간학회 논문집
    • /
    • 제19권2호
    • /
    • pp.283-299
    • /
    • 2017
  • 터널의 누수는 콘크리트 라이닝과 같은 구조물의 장기 내구성을 저하시키는 원인이 된다. 내구성 저하 원인은 염화물, 황산염, 물, 가스 등 지하수에 포함되어 있는 여러 가지 물질이 될 수 있다. 본 연구에서는 터널의 지보재로서 또는 방수재로서 사용되는 뿜어붙임멤브레인의 방수성능과 염수에 대한 저항성을 파악하기 위한 기초 시험을 수행하였다. 그 결과, 일부 시험체에서 물의 침투가 발생할 수 있는 것을 파악하였고 그 원인이 액상폴리머와 분말재료의 혼합에 의해 생기는 내부공극과 수압에 의해 내부공극이 연결되어 발생하는 것임을 알 수 있었다. 그리고 증류수와 염수에 침지된 시험체에 대한 인장강도시험을 통해서 인장강도가 기건상태에 비해 절반 이하로 감소될 수 있음을 확인하였다. 또한 신장률은 염수보다 증류수에서 신장률이 더 커지는 결과가 나타났다. 그러나 이 결과는 추가적인 조사가 필요할 것으로 판단된다.

압축공기 저장용 파일롯 터널에 설치된 콘크리트 플러그의 안정성 해석 (Stability Analysis of Concrete Plugs Installed in Pilot Tunnels for the Storage of Compressed Air)

  • 이연규;송원경;박철환;최병희
    • 터널과지하공간
    • /
    • 제20권6호
    • /
    • pp.446-454
    • /
    • 2010
  • 압축공기를 활용한 가스터빈 발전방식(CAES-G/T)은 태양열이나 풍력과 같은 신재생 에너지의 출력 변동성을 조절하는 유력한 수단 중 하나로 고려되고 있다. 국내에서 CAES 발전이 실용화된다면 지질여건상 암반터널식이 채택될 가능성이 크다. 암반터널식 CAES 시설에서는 압축공기 저장공간을 밀폐시키기 위한 콘크리트 플러그의 설치가 필요하므로 플러그의 형상과 크기를 결정하는 것이 중요한 설계변수가 된다. 파괴에 대한 안전율 분포와 접촉부 접촉압력 분포 분석을 통해 2가지 형태의 콘크리트 플러그에 대한 안정성 평가를 수행하였다. 주어진 지질조건에서는 테이퍼형 플러그가 쐐기형 플러그에 비해 구조적으로 안정한 것으로 나타났다. 쐐기형 플러그의 경우 측면 접촉부에서 분리현상이 예측되었고 이러한 분리면에서 압축공기의 누출 가능성과 마찰저항의 감소가 발생할 수 있음을 보여주었다.

Direct Microwave Sintering of Poorly Coupled Ceramics in Electrochemical Devices

  • Amiri, Taghi;Etsell, Thomas H.;Sarkar, Partha
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권3호
    • /
    • pp.390-397
    • /
    • 2022
  • The use of microwaves as the energy source for synthesis and sintering of ceramics offers substantial advantages compared to conventional gas-fired and electric resistance furnaces. Benefits include much shorter processing times and reaching the sintering temperature more quickly, resulting in superior final product quality. Most oxide ceramics poorly interact with microwave irradiation at low temperatures; thus, a more complex setup including a susceptor is needed, which makes the whole process very complicated. This investigation pursued a new approach, which enabled us to use microwave irradiation directly in poorly coupled oxides. In many solid-state electrochemical devices, the support is either metal or can be reduced to metal. Metal powders in the support can act as an internal susceptor and heat the entire cell. Then sufficient interaction of microwave irradiation and ceramic material can occur as the sample temperature increases. This microwave heating and exothermic reaction of oxidation of the support can sinter the ceramic very efficiently without any external susceptor. In this study, yttria stabilized zirconia (YSZ) and a Ni-YSZ cermet support were used as an example. The cermet was used as the support, and a YSZ electrolyte was coated and sintered directly using microwave irradiation without the use of any susceptor. The results were compared to a similar cell prepared using a conventional electric furnace. The leakage test and full cell power measurement results revealed a fully leak-free electrolyte. Scanning electron microscopy and density measurements show that microwave sintered samples have lower open porosity in the electrode support than conventional heat treatment. This technique offers an efficient way to directly use microwave irradiation to sinter thin film ceramics without a susceptor.

W 도핑된 ZnO 박막을 이용한 저항 변화 메모리 특성 연구

  • 박소연;송민영;홍석만;김희동;안호명;김태근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.410-410
    • /
    • 2013
  • Next-generation nonvolatile memory (NVM) has attracted increasing attention about emerging NVMs such as ferroelectric random access memory, phase-change random access memory, magnetic random access memory and resistance random access memory (RRAM). Previous studies have demonstrated that RRAM is promising because of its excellent properties, including simple structure, high speed and high density integration. Many research groups have reported a lot of metal oxides as resistive materials like TiO2, NiO, SrTiO3 and ZnO [1]. Among them, the ZnO-based film is one of the most promising materials for RRAM because of its good switching characteristics, reliability and high transparency [2]. However, in many studies about ZnO-based RRAMs, there was a problem to get lower current level for reducing the operating power dissipation and improving the device reliability such an endurance and an retention time of memory devices. Thus in this paper, we investigated that highly reproducible bipolar resistive switching characteristics of W doped ZnO RRAM device and it showed low resistive switching current level and large ON/OFF ratio. This may be caused by the interdiffusion of the W atoms in the ZnO film, whch serves as dopants, and leakage current would rise resulting in the lowering of current level [3]. In this work, a ZnO film and W doped ZnO film were fabricated on a Si substrate using RF magnetron sputtering from ZnO and W targets at room temperature with Ar gas ambient, and compared their current levels. Compared with the conventional ZnO-based RRAM, the W doped ZnO ReRAM device shows the reduction of reset current from ~$10^{-6}$ A to ~$10^{-9}$ A and large ON/OFF ratio of ~$10^3$ along with self-rectifying characteristic as shown in Fig. 1. In addition, we observed good endurance of $10^3$ times and retention time of $10^4$ s in the W doped ZnO ReRAM device. With this advantageous characteristics, W doped ZnO thin film device is a promising candidates for CMOS compatible and high-density RRAM devices.

  • PDF