• 제목/요약/키워드: Gas flowmeter

검색결과 39건 처리시간 0.031초

코리올리스 질량유량계의 유량측정에 영향을 미치는 인자에 관한 실험적 연구 (An Experimental Study on the Influential Factors of Flow Measurement with Coriolis Mass Flowmeter)

  • 임기원;이완규
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1699-1707
    • /
    • 2003
  • Coriolis mass flowmeter(CMF), which can measure the mass flow directly, is getting rapid attention for the industrial and custody transfer purpose. In order to study the characteristics and the applicability of CMF, it is tested with the national flow standard system. Two types of sensing tube, U-type and straight type, are employed in the test. Water, spindle oil and viscosity Standard Reference Material whose viscosities are 1, 20 and, 67 $\textrm{mm}^2$/s, respectively, are studied. It is shown that the linearity of CMF is getting deteriorated as the fluid viscosity increases, which is due to the zero drift and the relaxation time of the fluid. To test its applicability in the case of high pressured gas, it is calibrated using compressed air, It shows 1∼l.6 % deviations compared to the calibration results using water. It concludes that the fluid velocity in CMF should be lower than the sonic velocity. In addition, the effects of the vibration from the pipeline and pump on CMF as well as the long term stability are studied.

코리올리 질량유량계를 이용한 액화석유가스(LPG) 정량 측정 방법 연구 (A Study on Liquified Petroleum Gas(LPG) Fuel Quantitative Method using Coriolis Mass Flowmeter)

  • 박태성;성상래;임의순;이정민;이명식;강형규
    • 한국가스학회지
    • /
    • 제22권6호
    • /
    • pp.109-122
    • /
    • 2018
  • 국내 LPG 미터는 "계량에 관한 법률"에 의거 LPG 정량에 대한 검사가 실시되고 있다. LPG 미터는 "계량에 관한 법률 시행령"에 따라 3년마다 재검정이 실시된다. 검사 시 최대허용오차는 ${\pm}1.0%$ 이내, 사용오차는 ${\pm}1.5%$ 이내이다. 정량 측정 시에는 밀도부액계, 저울, 압력용기를 사용한다. LPG는 온도와 압력에 따라 부피 변화의 정도가 매우 심하다. 현행 정량 측정 방법은 LPG의 부피를 구하기 위해 온도 및 압력, 밀도를 측정해야 하며, 이에 따른 장비들이 필요하다. 반면에 코리올리 질량유량계는 질량유량, 밀도, 온도를 동시에 측정하며, 컴퓨터 프로그램을 사용하여 측정값을 필요한 값으로 변환 및 산출 할 수 있어, 산업현장에서 널리 적용되고 있다. 본 연구에서는 LPG 정량 측정에 대한 기초연구로서, 코리올리 질량유량계를 이용하여 LPG 충전기에서 나온 LPG 부피를 측정했다. 또한, 기존 LPG 충전기 검사방법과의 비교를 통해 코리올리 질량유량계를 이용한 LPG 충전기 검사도 가능하다는 결론을 얻었다.

엔진 고공 시험에서 연료 유량 측정용 터빈 유량계의 측정 불확도 분석 (Measurement Uncertainty Analysis of a Turbine Flowmeter for Fuel Flow Measurement in Altitude Engine Test)

  • 양인영
    • 한국유체기계학회 논문집
    • /
    • 제14권1호
    • /
    • pp.42-47
    • /
    • 2011
  • Measurement uncertainty analysis of fuel flow using turbine flowmeter was performed for the case of altitude engine test. SAE ARP4990 was used as the fuel flow calculation procedure, as well as the mathematical model for the measurement uncertainty assessment. The assessment was performed using Sensitivity Coefficient Method. 11 parameters involved in the calculation of the flow rate were considered. For the given equipment setup, the measurement uncertainty of fuel flow was assessed in the range of 1.19~1.86 % for high flow rate case, and 1.47~3.31 % for low flow rate case. Fluctuation in frequency signal from the flowmeter had the largest influence on the fuel flow measurement uncertainty for most cases. Fuel temperature measurement had the largest for the case of low temperature and low flow rate. Calibration of K-factor and the interpolation of the calibration data also had large influence, especially for the case of very low temperature. Reference temperature, at which the reference viscosity of the sample fuel was measured, had relatively small contribution, but it became larger when the operating fuel temperature was far from reference temperature. Measurement of reference density had small contribution on the flow rate uncertainty. Fuel pressure and atmospheric pressure measurement had virtually no contribution on the flow rate uncertainty.

열량형 질량유량계에 대한 압력과 비열 영향 (The Effects of Pressure and Specific Heat on the Performance of Thermal Mass Flowmeter)

  • 최용문;박경암;최해만;이기성
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.109-113
    • /
    • 1999
  • Thermal mass flow meter (TMF) is used measuring the small mass flow rate of gases. Generally, flow rate measuring accuracy of TMF is $\pm2{\%}$ of full scale. TMF is manufactured for specified working pressure and specified working gas by customer. If it were applied for different working pressure and gases, flow rate measurement accuracy decreased dramatically. In this study, a TMF tested with three different gases and pressure range of 0.2 MPa to 1.0 MPa. Effect of specific heat cause to increase flow measurement error as much as ratio of specific heat compare with reference gas. Pressure change cause to increase flowrate measurement deviation about $-0.2{\%}$ as the working pressure decreased 0.1 MPa.

  • PDF

Signal processing method based on energy ratio for detecting leakage of SG using EVFM

  • Xu, Wei;Xu, Ke-Jun;Yan, Xiao-Xue;Yu, Xin-Long;Wu, Jian-Ping;Xiong, Wei
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1677-1688
    • /
    • 2020
  • In the sodium-cooled fast reactor, the steam generator is a heat exchange device between sodium and water, which may cause leakage, resulting in a sodium-water reaction accident, which in turn affects the safe operation of the entire nuclear reactor. To this end, the electromagnetic vortex flowmeter is used to detect leakage of the steam generator and its signal processing method is studied in this paper. The hydraulic experiment was carried out by using water instead of liquid sodium, and the sensor output signal of the electromagnetic vortex flowmeter under different gas injection volumes was collected. The bubble noise signal is reflected by the base line of the sensor output signal. According to the relationship between the proportion of the bubble noise signal in the sensor output signal and the gas injection volume, a signal processing method based on the energy ratio calculation is proposed to detect whether the water contains bubbles. The gas injection experiment of liquid sodium was conducted to verify the effectiveness of the signal processing method in the detection of bubbles in sodium, and the minimum detectable leak rate of water in the steam generator was detected to be 0.2 g/s.

초임계 영역내 $CO_2$ 냉각 열전달과 압력강하 분석 (Analysis of Heat Transfer and Pressure Drop During Gas Cooling Process of Carbon Dioxide in Transcritical Region)

  • 손창효;이동건;정시영;김영률;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.65-74
    • /
    • 2004
  • The heat transfer coefficient and pressure drop of $CO_2$(R-744) during gas cooling Process of carbon dioxide in a horizontal tube were investigated experimentally and theoretically. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop consist of a receiver. a variable-speed pump. a mass flowmeter, an evaporator. and a gas cooler(test section). The main components of the water loop consist of a variable-speed Pump. an constant temperature bath. and a flowmeter. The gas cooler is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus The test section consists of smooth, horizontal stainless steel tube of 9.53 mm outer diameter and 7.75 mm inner diameter. The length of test section is 6 m. The refrigerant mass fluxes were 200 ~ 300 kg/($m^2{\cdot}s$) and the inlet pressure of the gas cooler varied from 7.5 MPa to 8.5 MPa. The main results were summarized as follows : The predicted correlation can evaluated the R-744 exit temperature from the gas cooler within ${\pm}10%$ for most of the experimental data, given only the inlet conditions. The predicted gas cooley capacity using log mean temperature difference showed relatively food agreement with gas cooler capacity within ${\pm}5%$. The pressure drop predicted by Blasius estimated the pressure drop on the $CO_2$ side within ${\pm}4.3%$. The predicted heat transfer coefficients using Gnielinski's correlation evaluated the heat transfer coefficients on the $CO_2$ side well within the range of experimental error. The predicted heat transfer coefficients using Gao and Honda's correlation estimated the heat transfer coefficients on the coolant side well within ${\pm}10\;%$. Therefore. The predicted equation's usefulness is demonstrated by analyzing data obtained in experiments.

엔진 고공 시험에서 공기 유량 측정용 벤투리 파이프의 제작 및 측정 불확도 분석 (Manufacture and Measurement Uncertainty Analysis of a Venturi Pipe for Airflow Measurement in Altitude Engine Test)

  • 양인영;오중환
    • 한국유체기계학회 논문집
    • /
    • 제13권6호
    • /
    • pp.36-41
    • /
    • 2010
  • Design, manufacture and calibration procedures of a venturi pipe flowmeter for airflow measurement in altitude engine test were discussed. Altitude engine test using venturi pipe was given as an example. The venturi was designed per the ISO standard of ISO5167, and was intented to include the entire airflow range in the test envelope of the gas turbine engine. Measurement uncertainty analysis was performed in the design procedure to investigate the effect of venturi geometry and sensor specification upon the measurement uncertainty. Manufacturing process was designed to minimize the deviation from the geometry of design. Calibration was performed to get the relationship between the discharge coefficient and the pipe Reynolds number. Then the uncertainty was assessed again using real data acquired during engine test. Through these procedures, it was possible to maintain the uncertainty of airflow measurement under 1 % for most of the operating envelope of the gas turbine engine. The discharge coefficient of the venturi pipe showed agreement with the value suggested in the ISO standard ISO5167-4 within 0.6 %.

수평관내 초임계 영역의 Co2 냉각 열전달 특성 (Heat Transfer Characteristics During Gas Cooling Process of Carbon Dioxide in a Horizontal Tube)

  • 손창효;이동건;오후규;정시영;김영률
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.289-295
    • /
    • 2004
  • The heat transfer coefficient and pressure drop during gas cooling process of carbon dioxide in a horizontal tube were investigated. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flowmeter, an evaporator, and a gas cooler(test section). The main components of the water loop consist of a variable-speed pump, an isothermal tank, and a flowmeter. The gas cooler is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. The test section consists of smooth, horizontal stainless steel tube of the outer diameter of 9.53mm and of the inner diameter of 7.75mm. The length of the test section is 6m. The refrigerant mass fluxes were 200∼300kg/(m2$.$s) and the inlet pressure of the gas cooler varied from 7.5㎫ to 8.5㎫. The main results were summarized as follows : Pressure drop of CO2 increases with increasing gas cooler pressure. The friction factors of CO2 in a horizontal tube show a relatively good agreement with the correlation by Blasius. The heat transfer coefficient of CO2 in transcritical region increases with decreasing gas cooler pressure and decreasing mass flux of CO2. Most of correlations proposed in a transcritical region showed significant deviations with experimental data except for those predicted by Gnielinski.

터빈 유량계를 사용한 이상유동의 측정

  • 심재우
    • 한국해양공학회지
    • /
    • 제12권2호통권28호
    • /
    • pp.147-152
    • /
    • 1998
  • In this study turbine flowmeters were used to predict volumetric flow rate of each phase in two-phase, gas-liquid, flowing in a vertical tube. To determine volumetric flow rates of two-phase, air-water, flowing vertically upward through the polycarbonate tube(57mm ID-inside diameter), two turbine flow meters were used. For void fraction measurements, two gamma densitometers were used at each location of the turbine flow meter, one at the upstream and the other at the downstream. It was determined that the turbine flowmeter's outputs were a function of actual volumetric flow rate of each of the two phases. A two-phase flow model was developed.

  • PDF